
Public

SMART CONTRACT AUDIT REPORT

for

Aura Finance

Prepared By: Patrick Lou

PeckShield
April 21, 2022

1/23 PeckShield Audit Report #: 2022-149

contact@peckshield.com

Public

Document Properties

Client Aura Finance
Title Smart Contract Audit Report
Target Aura Finance
Version 1.0
Author Xiaotao Wu
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 21, 2022 Xiaotao Wu Final Release
1.0-rc April 18, 2022 Xiaotao Wu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 183 5897 7782
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2022-149

Public

Contents

1 Introduction 4
1.1 About Aura Finance . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Incorrect delegatee Updating In AuraLocker::_processExpiredLocks() 12
3.2 Type Mismatch In AuraLocker::updateReward() . 13
3.3 Improved Logic In AuraLocker::getReward() . 14
3.4 Meaningful Events For Important State Changes . 15
3.5 Accommodation of Non-ERC20-Compliant Tokens 17
3.6 Trust Issue of Admin Keys . 19

4 Conclusion 21

References 22

3/23 PeckShield Audit Report #: 2022-149

Public

1 | Introduction

Given the opportunity to review the Aura Finance design document and related smart contract source
code, we outline in the report our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Aura Finance

Aura Finance is a protocol built on top of the Balancer system to provide maximum incentives to
Balancer LPs and BAL stakers through social aggregation of BAL deposits and Aura’s native token AURA.
It is a fork of Convex Finance with additional adaptations to make the protocol more generic. The
basic information of the audited protocol is as follows:

Table 1.1: Basic Information of Aura Finance

Item Description
Name Aura Finance

Website https://aura.finance/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 21, 2022

In the following, we show the Git repositories of reviewed files and the commit hash value
used in this audit. Note this audit only covers the Aura.sol, AuraBalRewardPool.sol, AuraLocker

.sol, AuraMath.sol, AuraMinter.sol, AuraStakingProxy.sol, AuraVestedEscrow.sol, BalInvestor.sol,
CrvDepositorWrapper.sol Booster.sol, BaseRewardPool4626.sol, BaseRewardPool.sol, CrvDepositor.sol,
and VoterProxy.sol contracts.

4/23 PeckShield Audit Report #: 2022-149

Public

• https://github.com/aurafinance/aura-contracts.git (f5249fc)

• https://github.com/aurafinance/convex-platform.git (e1add5b)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/aurafinance/aura-contracts.git (456bd50)

• https://github.com/aurafinance/convex-platform.git (cc2c8fc)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/23 PeckShield Audit Report #: 2022-149

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/23 PeckShield Audit Report #: 2022-149

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow

Kill-Switch Mechanism
Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/23 PeckShield Audit Report #: 2022-149

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2022-149

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/23 PeckShield Audit Report #: 2022-149

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Aura Finance protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 2

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/23 PeckShield Audit Report #: 2022-149

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 3 low-severity vulnerabilities, and 2 informational recommendations.

Table 2.1: Key Aura Finance Audit Findings

ID Severity Title Category Status
PVE-001 Low Incorrect delegatee Updating In Au-

raLocker::_processExpiredLocks()
Business Logic Resolved

PVE-002 Informational Type Mismatch In Au-
raLocker::updateReward()

Coding Practices Resolved

PVE-003 Low Improved Logic In Au-
raLocker::getReward()

Business Logic Resolved

PVE-004 Informational Meaningful Events For Important
State Changes

Coding Practices Confirmed

PVE-005 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practices Resolved

PVE-006 Medium Trust Issue of Admin Keys Security Features Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/23 PeckShield Audit Report #: 2022-149

Public

3 | Detailed Results

3.1 Incorrect delegatee Updating In
AuraLocker::_processExpiredLocks()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AuraLocker

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The AuraLocker contract provides an external kickExpiredLocks() function for users to unlock the
staked tokens of a staker if the unlock time plus the grace period is met. A portion of the unlocked
tokens will be sent to the function caller as a reward. This function internally calls the low-level
helper routine, i.e., _processExpiredLocks(), to calculate the reward for the msg.sender, transfer the
staked tokens to the staker, and transfer the reward to the msg.sender. Our analysis with this routine
shows its current implementation for updating the checkpoint of the staker’s delegatee is not correct.

To elaborate, we show below its code snippet. Specifically, the delegatee account used for
updating the checkpoint should be delegates(_account), instead of current delegates(msg.sender)

(line 369).
346 function kickExpiredLocks(address _account) external nonReentrant {
347 //allow kick after grace period of ’kickRewardEpochDelay ’
348 _processExpiredLocks(_account , false , msg.sender , rewardsDuration.mul(

kickRewardEpochDelay));
349 }

Listing 3.1: AuraLocker::kickExpiredLocks()

346 // Withdraw all currently locked tokens where the unlock time has passed
347 function _processExpiredLocks(
348 address _account ,

12/23 PeckShield Audit Report #: 2022-149

Public

349 bool _relock ,
350 address _rewardAddress ,
351 uint256 _checkDelay
352) internal updateReward(_account) {
353 LockedBalance [] storage locks = userLocks[_account];
354 Balances storage userBalance = balances[_account];
355 uint112 locked;
356 uint256 length = locks.length;
357 uint256 reward = 0;
358 uint256 expiryTime = _checkDelay == 0 && _relock
359 ? block.timestamp.add(rewardsDuration)
360 : block.timestamp.sub(_checkDelay);
361 require(length > 0, "no locks");
362 ...
363
364 // update user balances and total supplies
365 userBalance.locked = userBalance.locked.sub(locked);
366 lockedSupply = lockedSupply.sub(locked);
367
368 // checkpoint the delegatee
369 _checkpointDelegate(delegates(msg.sender), 0, 0);
370
371 emit Withdrawn(_account , locked , _relock);
372 ...
373 }

Listing 3.2: AuraLocker::_processExpiredLocks()

Recommendation Use the correct delegatee account to update the checkpoint.

Status This issue has been fixed in this commit: 456bd50.

3.2 Type Mismatch In AuraLocker::updateReward()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: AuraLocker

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

The AuraLocker contract implements the updateReward() modifier to update reward for a specified
account. While examining the updateReward() modifier, we notice there is a type mismatch when
updating reward related informations for an account.

13/23 PeckShield Audit Report #: 2022-149

https://github.com/aurafinance/aura-contracts/commit/456bd50

Public

To elaborate, we show below its code snippet. Specifically, the member variables rewards and
rewardPerTokenPaid in structure UserData is defined as uint128, but the current implementation assigns
uint112 values to these two variables (lines 181-182).

170 modifier updateReward(address _account) {
171 {
172 Balances storage userBalance = balances[_account];
173 uint256 rewardTokensLength = rewardTokens.length;
174 for (uint256 i = 0; i < rewardTokensLength; i++) {
175 address token = rewardTokens[i];
176 uint256 newRewardPerToken = _rewardPerToken(token);
177 rewardData[token]. rewardPerTokenStored = newRewardPerToken.to96();
178 rewardData[token]. lastUpdateTime = _lastTimeRewardApplicable(rewardData[

token]. periodFinish).to32();
179 if (_account != address (0)) {
180 userData[_account][token] = UserData ({
181 rewardPerTokenPaid: newRewardPerToken.to112(),
182 rewards: _earned(_account , token , userBalance.locked).to112 ()
183 });
184 }
185 }
186 }
187 _;
188 }

Listing 3.3: AuraLocker::updateReward()

Recommendation Assign uint128 values for member variables rewards and rewardPerTokenPaid.

Status This issue has been fixed in this commit: 456bd50.

3.3 Improved Logic In AuraLocker::getReward()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AuraLocker

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The getReward contract provides a public getReward() function for users to claim all pending rewards
for a specified account. While examining the routine, we notice the current implementation logic can
be improved.

To elaborate, we show below its code snippet. It comes to our attention that the current
implementation allows a user to stake the cvxCrv reward for the specified account, which may not be

14/23 PeckShield Audit Report #: 2022-149

https://github.com/aurafinance/aura-contracts/commit/456bd50

Public

the _account’s real intention (lines 311-312).
303 // Claim all pending rewards
304 function getReward(address _account , bool _stake) public nonReentrant updateReward(

_account) {
305 uint256 rewardTokensLength = rewardTokens.length;
306 for (uint256 i; i < rewardTokensLength; i++) {
307 address _rewardsToken = rewardTokens[i];
308 uint256 reward = userData[_account][_rewardsToken]. rewards;
309 if (reward > 0) {
310 userData[_account][_rewardsToken]. rewards = 0;
311 if (_rewardsToken == cvxCrv && _stake) {
312 IRewardStaking(cvxcrvStaking).stakeFor(_account , reward);
313 } else {
314 IERC20(_rewardsToken).safeTransfer(_account , reward);
315 }
316 emit RewardPaid(_account , _rewardsToken , reward);
317 }
318 }
319 }

Listing 3.4: AuraLocker::enterRaffle()

Recommendation Only allow the function caller to stake the the cvxCrv reward if msg.sender
== _account.

Status This issue has been fixed in this commit: 456bd50.

3.4 Meaningful Events For Important State Changes

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the AuraLocker contract as an example. While examining the events
that reflect the AuraLocker dynamics, we notice there is a lack of emitting related events to reflect

15/23 PeckShield Audit Report #: 2022-149

https://github.com/aurafinance/aura-contracts/commit/456bd50

Public

important state changes. Specifically, when the addReward()/approveRewardDistributor() are being
called, there are no corresponding events being emitted to reflect the occurrence of addReward()/

approveRewardDistributor().

194 // Add a new reward token to be distributed to stakers
195 function addReward(address _rewardsToken , address _distributor) external onlyOwner {
196 require(rewardData[_rewardsToken]. lastUpdateTime == 0, "Reward already exists");
197 require(_rewardsToken != address(stakingToken), "Cannot add StakingToken as

reward");
198 rewardTokens.push(_rewardsToken);
199 rewardData[_rewardsToken]. lastUpdateTime = uint32(block.timestamp);
200 rewardData[_rewardsToken]. periodFinish = uint32(block.timestamp);
201 rewardDistributors[_rewardsToken][_distributor] = true;
202 }

204 // Modify approval for an address to call notifyRewardAmount
205 function approveRewardDistributor(
206 address _rewardsToken ,
207 address _distributor ,
208 bool _approved
209) external onlyOwner {
210 require(rewardData[_rewardsToken]. lastUpdateTime > 0, "Reward does not exist");
211 rewardDistributors[_rewardsToken][_distributor] = _approved;
212 }

Listing 3.5: AuraLocker::addReward()/approveRewardDistributor()

Note a number of routines in the Aura Finance contracts can be similarly improved, includ-
ing AuraStakingProxy::setCrvDepositorWrapper()/setKeeper()/setPendingOwner()/applyPendingOwner()

/setRewards(), AuraVestedEscrow::setAdmin()/setLocker(), BaseRewardPool::addExtraReward()/clearExtraRewards

(), CrvDepositor::setFeeManager()/setFees()/setCooldown(), and CurveVoterProxy::setOwner()/setRewardDeposit

()/setOperator()/setDepositor()/setStashAccess()/setVote().

Recommendation Properly emit the related event when the above-mentioned functions are
being invoked.

Status This issue has been confirmed.

16/23 PeckShield Audit Report #: 2022-149

Public

3.5 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.6: USDT Token Contract

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

17/23 PeckShield Audit Report #: 2022-149

Public

37 /**
38 * @dev Deprecated. This function has issues similar to the ones found in
39 * {IERC20 -approve}, and its usage is discouraged.
40 *
41 * Whenever possible , use {safeIncreaseAllowance} and
42 * {safeDecreaseAllowance} instead.
43 */
44 function safeApprove(
45 IERC20Upgradeable token ,
46 address spender ,
47 uint256 value
48) internal {
49 // safeApprove should only be called when setting an initial allowance ,
50 // or when resetting it to zero. To increase and decrease it, use
51 // ’safeIncreaseAllowance ’ and ’safeDecreaseAllowance ’
52 require(
53 (value == 0) (token.allowance(address(this), spender) == 0),
54 "SafeERC20: approve from non -zero to non -zero allowance"
55);
56 _callOptionalReturn(token , abi.encodeWithSelector(token.approve.selector ,

spender , value));
57 }

Listing 3.7: SafeERC20Upgradeable::safeApprove()

In the following, we use the CurveVoterProxy::withdraw() routine as an example. This routine
is designed to withdraw the distributed ERC20 tokens from the vote contract to the rewardDeposit

contract as extra rewards. To accommodate the specific idiosyncrasy, there is a need to safeApprove

() twice: the first one reduces the allowance to 0; and the second one sets the new allowance.

162 /**
163 * @notice Withdraw ERC20 tokens that have been distributed as extra rewards
164 * @dev Tokens shouldn ’t end up here if they can help it. However , dao can
165 * set a withdrawer that can process these to some ExtraRewardDistribution.
166 */
167 function withdraw(IERC20 _asset) external returns (uint256 balance) {
168 require(msg.sender == withdrawer , "!auth");
169 require(protectedTokens[address(_asset)] == false , "protected");
170
171 balance = _asset.balanceOf(address(this));
172 _asset.approve(rewardDeposit , balance);
173 IRewardDeposit(rewardDeposit).addReward(address(_asset), balance);
174 return balance;
175 }

Listing 3.8: CurveVoterProxy::withdraw()

Note a number of routines in the Aura Finance contracts can be similarly improved, including
CrvDepositorWrapper::setApprovals() and including AuraVestedEscrow::_claim().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related

18/23 PeckShield Audit Report #: 2022-149

Public

approve().

Status This issue has been fixed in this commit: cc2c8fc.

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Aura Finance protocol, there are two privileged account, i.e., owner and admin. These accounts
play a critical role in governing and regulating the system-wide operations (e.g., change the locker
contract address, cancel the vesting rewardTokens, and set the key parameters for the Aura Finance

protocol, etc.). Our analysis shows that these privileged accounts need to be scrutinized. In the
following, we use the AuraVestedEscrow contract as an example and show the representative functions
potentially affected by the privileges of the admin account.

73 /**
74 * @notice Change contract admin
75 * @param _admin New admin address
76 */
77 function setAdmin(address _admin) external {
78 require(msg.sender == admin , "!auth");
79 admin = _admin;
80 }

82 /**
83 * @notice Change locker contract address
84 * @param _auraLocker Aura Locker address
85 */
86 function setLocker(address _auraLocker) external {
87 require(msg.sender == admin , "!auth");
88 auraLocker = IAuraLocker(_auraLocker);
89 }

Listing 3.9: AuraVestedEscrow::setAdmin()/setLocker()

112 /**
113 * @notice Cancel recipients vesting rewardTokens
114 * @param _recipient Recipient address
115 */
116 function cancel(address _recipient) external nonReentrant {
117 require(msg.sender == admin , "!auth");

19/23 PeckShield Audit Report #: 2022-149

https://github.com/aurafinance/convex-platform/commit/cc2c8fc

Public

118 require(totalLocked[_recipient] > 0, "!funding");

120 _claim(_recipient , false);

122 uint256 delta = remaining(_recipient);
123 rewardToken.safeTransfer(admin , delta);

125 totalLocked[_recipient] = 0;

127 emit Cancelled(_recipient);
128 }

Listing 3.10: AuraVestedEscrow::cancel()

If the privileged admin account is a plain EOA account, this may be worrisome and pose counter-
party risk to the protocol users. Note that a multi-sig account could greatly alleviate this concern,
though it is still far from perfect. Specifically, a better approach is to eliminate the administration key
concern by transferring the role to a community-governed DAO. In the meantime, a timelock-based
mechanism can also be considered as mitigation. Moreover, it should be noted if current contracts
are to be deployed behind a proxy, there is a need to properly manage the proxy-admin privileges as
they fall in this trust issue as well.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed. The Aura Finance team confirms that admin functions
will be operated by multi-sig initially and members of the DeFi community will operate these keys.

20/23 PeckShield Audit Report #: 2022-149

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Aura Finance protocol, which is
built on top of the Balancer system to provide maximum incentives to Balancer LPs and BAL stakers
through social aggregation of BAL deposits and Aura’s native token AURA. The current code base is
well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

21/23 PeckShield Audit Report #: 2022-149

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

22/23 PeckShield Audit Report #: 2022-149

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

23/23 PeckShield Audit Report #: 2022-149

https://www.peckshield.com

	Introduction
	About Aura Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect delegatee Updating In AuraLocker::_processExpiredLocks()
	Type Mismatch In AuraLocker::updateReward()
	Improved Logic In AuraLocker::getReward()
	Meaningful Events For Important State Changes
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

