
Aura Finance -
AuraBAL

Compounder
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: March 6th, 2023 - March 20th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) THE FIRST DEPOSITOR MAY LOSE FUNDS DUE TO ERC4626

ROUNDING ISSUE - HIGH 15

Description 15

Proof of Concept 16

Code Location 17

Risk Level 18

Recommendation 18

Remediation Plan 18

3.2 (HAL-02) PENALTY FEE CAN BE BYPASSED - MEDIUM 19

Description 19

Proof of Concept 20

Code Location 21

Risk Level 22

Remediation Plan 22

1

3.3 (HAL-03) THE LAST HARVEST OPERATION CAN BE SANDWICHED - LOW 23

Description 23

Code Location 23

Risk Level 25

Recommendation 26

Remediation Plan 26

3.4 (HAL-04) DUPLICATE REWARD TOKENS CAN BE ADDED - LOW 27

Description 27

Code Location 27

Risk Level 27

Recommendation 28

Remediation Plan 28

3.5 (HAL-05) LACK OF TWO-STEP OWNERSHIP PATTERN - LOW 29

Description 29

Code Location 29

Risk Level 29

Recommendation 30

Remediation Plan 30

3.6 (HAL-06) MISTAKENLY SEND ETHERS LOCKED FOREVER IN VAULTS - IN-

FORMATIONAL 31

Description 31

Code Location 31

Risk Level 31

Recommendation 31

2

Remediation Plan 31

3.7 (HAL-07) FOR LOOP OPTIMIZATIONS - INFORMATIONAL 32

Description 32

Code Location 32

Risk Level 33

Recommendation 33

Remediation Plan 33

3.8 (HAL-08) REDUNDANT CODE - INFORMATIONAL 34

Description 34

Code Location 34

Risk Level 35

Recommendation 35

Remediation Plan 35

3.9 (HAL-09) INCORRECT COMMENTS - INFORMATIONAL 36

Description 36

Risk Level 36

Recommendation 36

Remediation Plan 37

4 AUTOMATED TESTING 38

4.1 STATIC ANALYSIS SCAN 39

Description 39

Results 39

4.2 AUTOMATED SECURITY SCAN 41

Description 41

3

Results 41

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 03/19/2023 Ataberk Yavuzer

0.2 Document Edits 03/20/2023 Ataberk Yavuzer

0.3 Final Draft 03/20/2023 Ataberk Yavuzer

1.0 Remediation Plan 03/20/2023 Ataberk Yavuzer

1.1 Remediation Plan Review 03/20/2023 Grzegorz Trawinski

1.2 Remediation Plan Review 03/20/2023 Piotr Cielas

1.3 Remediation Plan Review 03/21/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Ataberk Yavuzer Halborn Ataberk.Yavuzer@halborn.com

Grzegorz
Trawinski

Halborn Grzegorz.Trawinski@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Ataberk.Yavuzer@halborn.com
mailto:Grzegorz.Trawinski@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Aura Finance is a protocol built on top of the Balancer system to provide

maximum incentives to Balancer liquidity providers and BAL stakers (into

veBAL) through social aggregation of BAL deposits and Aura’s native token.

Aura Finance engaged Halborn to conduct a security audit on their smart

contracts beginning on March 6th, 2023 and ending on March 20th, 2023.

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

and accepted by the Aura Finance team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of the smart contract audit. While manual testing is recommended

to uncover flaws in logic, process, and implementation; automated testing

8

EX
EC

UT
IV

E
OV

ER
VI

EW

techniques help enhance coverage of smart contracts and can quickly

identify items that don’t follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(solgraph)

• Manual Assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Dynamic Analysis (foundry)

• Static Analysis(slither, MythX)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

1. Aura Finance - AuraBAL Compounder Audit Test Scope

(a) Repository: compounder

(b) Commit ID: 5296b21a08280afef1d3d31964c65bc9f17d391f

2. In-Scope:

(a) compounder/*.sol

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/aurafinance/aura-contracts/tree/feat/aurabal-compounder/contracts/compounder
https://github.com/aurafinance/aura-contracts/tree/5296b21a08280afef1d3d31964c65bc9f17d391f/contracts

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 1 3 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-03)

(HAL-02)

(HAL-07)
(HAL-08)
(HAL-09)

(HAL-06)
(HAL-04)
(HAL-05)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) THE FIRST DEPOSITOR MAY
LOSE FUNDS DUE TO ERC4626 ROUNDING

ISSUE
High SOLVED - 03/19/2023

(HAL-02) PENALTY FEE CAN BE BYPASSED Medium SOLVED - 03/19/2023

(HAL-03) THE LAST HARVEST OPERATION
CAN BE SANDWICHED

Low RISK ACCEPTED

(HAL-04) DUPLICATE REWARD TOKENS
CAN BE ADDED

Low RISK ACCEPTED

(HAL-05) LACK OF TWO-STEP OWNERSHIP
PATTERN

Low RISK ACCEPTED

(HAL-06) MISTAKENLY SEND ETHERS
LOCKED FOREVER IN VAULTS

Informational SOLVED - 03/19/2023

(HAL-07) FOR LOOP OPTIMIZATIONS Informational ACKNOWLEDGED

(HAL-08) REDUNDANT CODE Informational ACKNOWLEDGED

(HAL-09) INCORRECT COMMENTS Informational ACKNOWLEDGED

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) THE FIRST DEPOSITOR
MAY LOSE FUNDS DUE TO ERC4626
ROUNDING ISSUE - HIGH

Description:

During the initial asset deposit in ERC4626 Vaults, the first liquidity

provider can lose funds due to rounding issues.

The risk above is explained in EIP4626 standard:

> Finally, ERC-4626 Vault implementers should be aware of the need for

specific, opposing rounding directions across the different mutable and

view methods, as it is considered most secure to favor the Vault itself

during calculations over its users:

If (1) it’s calculating how many shares to issue to a user for a

certain amount of the underlying tokens they provide or (2) it’s

determining the amount of the underlying tokens to transfer to them

for returning a certain amount of shares, it should round down.

If (1) it’s calculating the amount of shares a user has to supply

to receive a given amount of the underlying tokens or (2) it’s

calculating the amount of underlying tokens a user has to provide to

receive a certain amount of shares, it should round up.

The current GenericUnionVault contract does not implement any rounding

validations as discussed above. Thus, the contract is vulnerable to a

front-running attack.

In this case, any attacker can front-run the first deposit operation to

claim more assets during the redeem() call.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

Listing 1: PoC Code - ERC4626 Vulnerability

1 function test_ERC4626PoC () public {

2 vm.startPrank(user1);

3

4 uint256 preBalanceUser1 = testToken.balanceOf(user1);

5 uint256 preBalanceUser2 = testToken.balanceOf(user2);

6

7 testToken.approve(address(vault), 1);

8 vault.mint(1, user1);

9 strategyM.stake (20 e18);

10

11 vm.stopPrank ();

12

13 vm.startPrank(user2);

14 testToken.approve(address(vault), 100 e18);

15 vault.deposit (100e18 , user2);

16 vm.stopPrank ();

17

18 vm.prank(user1);

19 vault.redeem(1, user1 , user1);

20

21 uint256 afterBalanceUser1 = testToken.balanceOf(user1);

22

23 assertGt(afterBalanceUser1 , preBalanceUser1);

24

25 vm.prank(user2);

26 vault.redeem(3, user2 , user2); //! max redeem returns 4.

ë However , it will fail due to price miscalculation so we will use

ë 3.

27 uint256 afterBalanceUser2 = testToken.balanceOf(user2);

28

29 assertLt(afterBalanceUser2 , preBalanceUser2);

30 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 2: GenericVault.sol (Lines 114,116)

104 function deposit(address _to , uint256 _amount) public

ë notToZeroAddress(_to) returns (uint256 _shares) {

105 require(_amount > 0, "Deposit too small");

106

107 uint256 _before = totalUnderlying ();

108 IERC20(underlying).safeTransferFrom(msg.sender , strategy ,

ë _amount);

109 IStrategy(strategy).stake(_amount);

110

111 // Issues shares in proportion of deposit to pool amount

112 uint256 shares = 0;

113 if (totalSupply () == 0) {

114 shares = _amount;

115 } else {

116 shares = (_amount * totalSupply ()) / _before;

117 }

118 _mint(_to , shares);

119 emit Deposit(msg.sender , _to , _amount);

120 return shares;

121 }

Listing 3: GenericVault.sol (Line 136)

133 function _withdraw(uint256 _shares) internal returns (uint256

ë _withdrawable) {

134 require(totalSupply () > 0);

135 // Computes the amount withdrawable based on the number of

ë shares sent

136 uint256 amount = (_shares * totalUnderlying ()) / totalSupply ()

ë ;

137 // Burn the shares before retrieving tokens

138 _burn(msg.sender , _shares);

139 // If user is last to withdraw , harvest before exit

140 if (totalSupply () == 0) {

141 harvest ();

142 IStrategy(strategy).withdraw(totalUnderlying ());

143 _withdrawable = IERC20(underlying).balanceOf(address(this)

ë);

144 }

145 // Otherwise compute share and unstake

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

146 else {

147 _withdrawable = amount;

148 // Substract a small withdrawal fee to prevent users "

ë timing"

149 // the harvests. The fee stays staked and is therefore

150 // redistributed to all remaining participants.

151 uint256 _penalty = (_withdrawable * withdrawalPenalty) /

ë FEE_DENOMINATOR;

152 _withdrawable = _withdrawable - _penalty;

153 IStrategy(strategy).withdraw(_withdrawable);

154 }

155 return _withdrawable;

156 }

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

The contract should do an INITIAL DEPOSIT for an arbitrary address to

prevent this attack from happening. For example, some amounts should be

deposited for the zero address initially.

Also, the contract should follow the official Rounding recommendations

for ERC4626 functions as provided by OpenZeppelin:

• ERC4626.sol

Remediation Plan:

SOLVED: The Aura Finance team solved this issue by implementing a new

rounding pattern in their code.

Commit ID: diff-e4193a9b. . . b4d6e0ee04R361

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/1a60b061d5bb809c3d7e4ee915c77a00b1eca95d/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/aurafinance/aura-contracts/pull/184/files#diff-e4193a9b0001aae840d35c34354e6e5e45ff8c76759bd9fe48665bb4d6e0ee04R361

3.2 (HAL-02) PENALTY FEE CAN BE
BYPASSED - MEDIUM

Description:

The withdraw penalty fee formula does not take precision into account.

Therefore, it is possible to bypass the penalty fee by requesting a

withdraw of a small amount of shares.

The penalty fee formula parameters in the default configuration of

GenericUnionVault contract are given below:

Listing 4: Penalty Fee Formula - Variables

1 withdrawalPenalty = 100;

2 FEE_DENOMINATOR = 10000;

3

4 _penalty = (_withdrawable * withdrawalPenalty) / FEE_DENOMINATOR;

If _withdrawable variable returns less than 100, then _penalty will be

always zero.

Listing 5: Case 1 - Withdrawable less than 100

1 withdrawalPenalty = 100;

2 FEE_DENOMINATOR = 10000;

3 _withdrawable = 97;

4

5 _penalty = (_withdrawable * withdrawalPenalty) / FEE_DENOMINATOR;

6 _penalty = (97 * 100) /10000;

7 _penalty = 9700 / 10000;

8 _penalty = 0;

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

Listing 6: PoC Code - Penalty Fee Bypass

1 function test_withdrawFeeBypassPoc () public {

2 vm.startPrank(user1);

3

4 uint256 preBalanceUser1 = testToken.balanceOf(user1);

5 uint256 preBalanceUser2 = testToken.balanceOf(user2);

6

7 testToken.approve(address(vault), 102);

8 vault.mint (102, user1);

9

10 vm.stopPrank ();

11

12 vm.startPrank(user2);

13 testToken.approve(address(vault), 100 e18);

14 vault.deposit (100e18 , user2);

15 vm.stopPrank ();

16

17 vm.startPrank(user3);

18 testToken.approve(address(vault), 10e18);

19 vault.deposit (10e18 , user2);

20 vm.stopPrank ();

21

22

23 vm.prank(user2);

24 // vault.redeem (110, user2 , user2); // @audit - withdraws 109

ë shares -> 110 - 1 (penalty fee)

25 vault.redeem (97, user2 , user2); // @audit - withdraws 97

ë shares

26 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 7: GenericVault.sol (Line 151)

133 function _withdraw(uint256 _shares) internal returns (uint256

ë _withdrawable) {

134 require(totalSupply () > 0);

135 // Computes the amount withdrawable based on the number of

ë shares sent

136 uint256 amount = (_shares * totalUnderlying ()) / totalSupply ()

ë ;

137 // Burn the shares before retrieving tokens

138 _burn(msg.sender , _shares);

139 // If user is last to withdraw , harvest before exit

140 if (totalSupply () == 0) {

141 harvest ();

142 IStrategy(strategy).withdraw(totalUnderlying ());

143 _withdrawable = IERC20(underlying).balanceOf(address(this)

ë);

144 }

145 // Otherwise compute share and unstake

146 else {

147 _withdrawable = amount;

148 // Substract a small withdrawal fee to prevent users "

ë timing"

149 // the harvests. The fee stays staked and is therefore

150 // redistributed to all remaining participants.

151 uint256 _penalty = (_withdrawable * withdrawalPenalty) /

ë FEE_DENOMINATOR;

152 _withdrawable = _withdrawable - _penalty;

153 IStrategy(strategy).withdraw(_withdrawable);

154 }

155 return _withdrawable;

156 }

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 4

Impact - 2

Remediation Plan:

SOLVED: The Aura Finance team solved the issue by changing their penalty

fee formula.

Commit ID: diff-e4193a9b0001. . . 5bb4d6e0ee04R360

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/pull/184/files#diff-e4193a9b0001aae840d35c34354e6e5e45ff8c76759bd9fe48665bb4d6e0ee04R360

3.3 (HAL-03) THE LAST HARVEST
OPERATION CAN BE SANDWICHED - LOW

Description:

If the totalSupply() function returns zero, the AuraBalVault:harvest()

function can be called by anyone. Therefore, the harvest function can

be called with zero as minAmtOut which is a slippage control parameter

provided to the swap() function.

This scenario is very unlikely. This vulnerability affects the last

harvester in the protocol.

In addition, the last user to harvest can also claim all remaining assets

in the vault.

Code Location:

Listing 8: AuraBalVault.sol (Lines 42,59)

40 function harvest(uint256 _minAmountOut , bool _lock) public {

41 require(

42 !isHarvestPermissioned || authorizedHarvesters[msg.sender]

ë || totalSupply () == 0,

43 "permissioned harvest"

44);

45 uint256 _harvested = AuraBalStrategy(strategy).harvest(msg.

ë sender , _minAmountOut , _lock);

46 emit Harvest(msg.sender , _harvested);

47 }

48

49 /// @notice Claim rewards and swaps them to auraBAL for restaking

50 /// @param _minAmountOut - min amount of BPT to receive for

ë harvest

51 /// @dev locking for auraBAL by default

52 function harvest(uint256 _minAmountOut) public {

53 harvest(_minAmountOut , true);

54 }

55

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

56 /// @notice Claim rewards and swaps them to auraBAL for restaking

57 /// @dev No slippage protection , swapping for auraBAL

58 function harvest () public override {

59 harvest (0);

60 }

Listing 9: Strategy.sol (Line 161)

120 function harvest(uint256 _minAmountOut) public onlyVault returns (

ë uint256 harvested) {

121 // claim rewards

122 auraBalStaking.getReward ();

123

124 // process extra rewards

125 uint256 extraRewardCount = IGenericVault(vault).

ë extraRewardsLength ();

126 for (uint256 i; i < extraRewardCount; ++i) {

127 address rewards = IGenericVault(vault).extraRewards(i);

128 address token = IVirtualRewards(rewards).rewardToken ();

129 uint256 balance = IERC20(token).balanceOf(address(this));

130 if (balance > 0) {

131 IERC20(token).safeTransfer(rewards , balance);

132 IVirtualRewards(rewards).queueNewRewards(balance);

133 }

134 }

135

136 // process rewards

137 address [] memory _rewardTokens = rewardTokens;

138 for (uint256 i; i < _rewardTokens.length; ++i) {

139 address _tokenHandler = rewardHandlers[_rewardTokens[i]];

140 if (_tokenHandler == address (0)) {

141 continue;

142 }

143 uint256 _tokenBalance = IERC20(_rewardTokens[i]).balanceOf

ë (address(this));

144 if (_tokenBalance > 0) {

145 IERC20(_rewardTokens[i]).safeTransfer(_tokenHandler ,

ë _tokenBalance);

146 IRewardHandler(_tokenHandler).sell();

147 }

148 }

149

150 uint256 _wethBalance = IERC20(WETH_TOKEN).balanceOf(address(

ë this));

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

151 uint256 _balBalance = IERC20(BAL_TOKEN).balanceOf(address(this

ë));

152

153 if (_wethBalance + _balBalance == 0) {

154 return 0;

155 }

156 // Deposit to BLP

157 _depositToBalEthPool(_balBalance , _wethBalance , 0);

158

159 // Swap the LP tokens for aura BAL

160 uint256 _bptBalance = IERC20(BAL_ETH_POOL_TOKEN).balanceOf(

ë address(this));

161 _swapBptToAuraBal(_bptBalance , _minAmountOut);

162

163 uint256 _auraBalBalance = IERC20(AURABAL_TOKEN).balanceOf(

ë address(this));

164 if (_auraBalBalance > 0) {

165 stake(_auraBalBalance);

166 return _auraBalBalance;

167 }

168

169 return 0;

170 }

Risk Level:

Likelihood - 1

Impact - 4

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to remove hardcoded slippage from contracts to prevent

sandwich attacks occurring.

Remediation Plan:

RISK ACCEPTED: The harvest() function can be front run if at least one

of the below statements is true:

1. the harvest is not permissioned, or

2. the caller is an authorized address, or

3. this is the last harvest.

The Aura Finance team accepted the risk and explained that

We are not going to have anybody else permissioned to do harvest.

So, isHarvestPermissioned is always going to be true. And, we will

send 1 token to a dead address so totalSupply will never be 0. So,

the harvest with no min out can never be called.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) DUPLICATE REWARD
TOKENS CAN BE ADDED - LOW

Description:

There is no check on addRewardToken() function to prevent adding the same

token more than one.

The addRewardToken() function should update the reward token parameters

if it already exists. If the token is new, the new token should be pushed

into the rewardTokens array directly.

Code Location:

Listing 10: Strategy.sol (Line 79)

78 function addRewardToken(address _token , address _handler) external

ë onlyOwner {

79 rewardTokens.push(_token);

80 _updateRewardToken(_token , _handler);

81 }

Risk Level:

Likelihood - 3

Impact - 1

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is suggested to add a require() check that controls if specified token

already exists on the contract.

Remediation Plan:

RISK ACCEPTED: The Aura Finance team accepted the risk of the finding,

and they will prefer using the current pattern on their protocol.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) LACK OF TWO-STEP
OWNERSHIP PATTERN - LOW

Description:

To change the owner address, the current contract owner can call the

Ownable.transferOwnership() function and set a new address and this new

address assumes the role immediately.

If the new address is inactive or not willing to act in the role, there

is no way to restore access to that role. Therefore, the owner role can

be lost.

Code Location:

Listing 11: Ownable Contracts

1 Strategy.sol#L19

2 GenericVault.sol#L22

3 FeeForwarder.sol#L21

Risk Level:

Likelihood - 3

Impact - 1

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to use the following Ownable2Step library instead of

Ownable library:

Ownable2Step.sol

Remediation Plan:

RISK ACCEPTED: The Aura Finance team accepted the risk of the finding,

and they will prefer using the current pattern on their protocol.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

3.6 (HAL-06) MISTAKENLY SEND ETHERS
LOCKED FOREVER IN VAULTS -
INFORMATIONAL

Description:

The StrategyBase contract implements the receive() function to accept

ether transfers. However, that contract does not use ETH for any oper-

ation. Therefore, if someone sends ETH to this contract, then ETH will

be stuck in the contract forever.

Code Location:

Listing 12: StrategyBase.sol (Line 112)

112 receive () external payable {}

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

Consider removing the receive() function to prevent accidental ETH trans-

fers.

Remediation Plan:

SOLVED: The Aura Finance team solved this issue by removing the receive()

function from StrategyBase contract.

Commit ID: diff-b0b5bba9e045. . . 00ccb6eba7dcL112

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/pull/184/files#diff-b0b5bba9e045f1b54e5bdd20e447beac6c217d1d0d6dc4dc97be00ccb6eba7dcL112

3.7 (HAL-07) FOR LOOP
OPTIMIZATIONS - INFORMATIONAL

Description:

It has been observed all for loops in the protocol are not optimized.

Suboptimal for loops can cost too much gas.

These for loops can be optimized with the suggestions above:

1. In Solidity (pragma 0.8.0 and later), adding the unchecked keyword

for arithmetical operations can reduce gas usage on contracts where

underflow/underflow is unrealistic. It is possible to save gas by

using this keyword on multiple code locations.

2. In all for loops, the index variable is incremented using +=. It is

known that, in loops, using ++i costs less gas per iteration than

+=. This also affects incremented variables within the loop code

block.

3. Do not initialize index variables with 0. Solidity already initial-

izes these uint variables as zero.

Code Location:

Listing 13: Suboptimal For Loops

1 GenericVault.sol:#L99

2 GenericVault.sol:#L146

3 GenericVault.sol:#L209

4 GenericVault.sol:#L245

5 GenericVault.sol:#L250

6 Strategy.sol:#L126

7 Strategy.sol:#L138

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to apply the following pattern for Solidity pragma

version 0.8.0 and later.

Listing 14: For Loop Optimization

1 for (uint256 i; i < arrayLength;) {

2 . . .

3 unchecked {

4 ++i

5 }

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this issue.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) REDUNDANT CODE -
INFORMATIONAL

Description:

The GenericUnionVault._beforeTokenTransfer() function uses a redundant

for loop. That function has two different for loops. Both for loops use

the same expressions. It might be a better idea to use only one for loop

for withdraw() and stake() functions.

Code Location:

Listing 15: GenericUnionVault.sol (Lines 245,250)

238 function _beforeTokenTransfer(

239 address from ,

240 address to ,

241 uint256 amount

242) internal override {

243 // Withdraw extra rewards for the "from" address to update

ë their earned

244 // amount when updateReward is called

245 for (uint256 i = 0; i < extraRewards.length; i++) {

246 IBasicRewards(extraRewards[i]).withdraw(from , amount);

247 }

248

249 // Stake extra rewards for the "to" address

250 for (uint256 i = 0; i < extraRewards.length; i++) {

251 IBasicRewards(extraRewards[i]).stake(to , amount);

252 }

253 }

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider using only one for loop for withdraw() and stake() operations

to decrease gas consumption.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this issue.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) INCORRECT COMMENTS -
INFORMATIONAL

Description:

There are two typos in @dev notes.

Listing 16: AuraBalVault.sol - Typo 1 (Line 37)

37 /// @dev Harvest can be called even if permissioned when last

ë staker is

38 /// withdrawing from the vault.

The comment says harvest can be called even if permissioned when the last

staker is withdrawing from the vault. However, it should be corrected as

if not permissioned since the protocol actually does not check permission

for the last staker.

Listing 17: Strategy.sol - Typo 2 (Line 17)

17 * - remove paltform fee

The second one should be corrected as remove platform fee.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is important to correct these typos for improving the readability of

the code.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this issue.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

38

AUTOMATED TESTING

4.1 STATIC ANALYSIS SCAN

Description:

Halborn used automated testing techniques to enhance coverage of cer-

tain areas of the scoped contract. Slither, a Solidity static analysis

framework, was used for static analysis. After Halborn verified all the

contracts in the repository and was able to compile them correctly into

their ABI and binary formats. This tool can statically verify mathe-

matical relationships between Solidity variables to detect invalid or

inconsistent usage of the contracts’ APIs across the entire code-base.

Results:

39

AU
TO

MA
TE

D
TE

ST
IN

G

As a result of the tests carried out with the Slither tool, some results

were obtained and these results were reviewed by Halborn. Based on

the results reviewed, some vulnerabilities were determined to be false

positives and these results were not included in the report. The actual

vulnerabilities found by Slither are already included in the report

findings.

40

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers in

order to locate any vulnerabilities.

Results:

Figure 1: MythX Result - 1

41

AU
TO

MA
TE

D
TE

ST
IN

G

Figure 2: MythX Result - 2

Figure 3: MythX Result - 3

The findings obtained as a result of the MythX scan were examined, and

the findings were not included in the report because they were false

positive.

42

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Code Location
	Risk Level
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS SCAN
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	Results

