
Aura Finance -
Sidechain

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: May 9th, 2023 - June 6th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 SCOPE 9

1.4 TEST APPROACH & METHODOLOGY 11

2 RISK METHODOLOGY 12

2.1 EXPLOITABILITY 13

2.2 IMPACT 14

2.3 SEVERITY COEFFICIENT 16

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 18

4 FINDINGS & TECH DETAILS 19

4.1 (HAL-01) SETTING RECEIVER TO MSG.SENDER CAN LOCK FUNDS PERMA-

NENTLY - MEDIUM(6.3) 21

Description 21

Code Location 21

BVSS 22

Recommendation 22

Remediation Plan 22

4.2 (HAL-02) DO NOT DECREASE INTERNAL TOTAL SUPPLY IF RESCUED TOKEN

IS NOT INNER TOKEN - LOW(2.3) 23

Description 23

Code Location 23

BVSS 24

1

Recommendation 24

Remediation Plan 25

4.3 (HAL-03) STAKEALL FUNCTION CAN STAKE WRONG AMOUNT - LOW(2.3) 26

Description 26

Code Location 26

BVSS 28

Recommendation 28

Remediation Plan 28

4.4 (HAL-04) CONTROL toAddress SIZE - LOW(2.3) 29

Description 29

Code Location 29

BVSS 30

Recommendation 30

Remediation Plan 30

4.5 (HAL-05) MEASURE BALANCE FOR REWARD DISTRUBUTION - INFORMA-

TIONAL(0.0) 31

Description 31

Code Location 31

BVSS 32

Recommendation 32

Remediation Plan 33

4.6 (HAL-06) EVENT IS NOT EMITTED CORRECTLY ON HARVEST FUNCTION -

INFORMATIONAL(0.0) 34

Description 34

Code Location 34

BVSS 35

Recommendation 35

2

Remediation Plan 35

4.7 (HAL-07) FUNCTIONS SHOULD BE PAUSABLE - INFORMATIONAL(0.0) 36

Description 36

BVSS 36

Recommendation 36

Remediation Plan 36

4.8 (HAL-08) CHANGE STRINGS FOR CUSTOM ERRORS TO SAVE GAS - INFOR-

MATIONAL(0.0) 37

Description 37

BVSS 37

Recommendation 37

Remediation Plan 37

4.9 (HAL-09) LACK OF REENTRANCY PROTECTION - INFORMATIONAL(0.0) 38

Description 38

BVSS 38

Recommendation 38

Remediation Plan 38

4.10 (HAL-10) INCONSISTENT NAMING CONVENTION - INFORMATIONAL(0.0) 39

Description 39

BVSS 39

Recommendation 39

Remediation Plan 39

4.11 (HAL-11) LACK OF UPGRADABILITY PATTERN - INFORMATIONAL(0.0) 40

Description 40

BVSS 40

Recommendation 40

3

Remediation Plan 40

4.12 (HAL-12) CENTRALIZATION RISK - INFORMATIONAL(0.0) 41

Description 41

BVSS 41

Recommendation 41

Remediation Plan 41

4.13 (HAL-13) EXTERNAL CALL ON LOOP - INFORMATIONAL(0.0) 42

Description 42

Code Location 42

BVSS 42

Recommendation 43

Remediation Plan 43

4.14 (HAL-14) LACK OF TWO STEP OWNERSHIP TRANSFER - INFORMA-

TIONAL(0.0) 44

Description 44

BVSS 44

Recommendation 44

Remediation Plan 45

5 RECOMMENDATIONS OVERVIEW 46

6 AUTOMATED TESTING 48

6.1 AUTOMATED SECURITY SCAN 49

Description 49

MythX results 49

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/02/2023 Luis Buendia

0.2 Document Updates 06/06/2023 Luis Buendia

0.3 Draft Review 06/06/2023 Gokberk Gulgun

0.4 Draft Review 06/06/2023 Gabi Urrutia

1.0 Remediation Plan 06/12/2023 Luis Buendia

1.1 Remediation Plan Review 06/14/2023 Gokberk Gulgun

1.2 Remediation Plan Review 06/14/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Luis Buendia Halborn Luis.Buendia@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Luis.Buendia@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Aura Finance engaged Halborn to conduct a security audit on their smart

contracts beginning on May 9th, 2023 and ending on June 6th, 2023. The

security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided four weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were mostly

addressed by the Aura Finance team.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 SCOPE

IN-SCOPE:

The security assessment was scoped to the following Aura Repository :

• AuraBalOFT.sol

• AuraBalProxyOFT.sol

• AuraOFT.sol

• AuraProxyOFT.sol

• Create2Factory.sol

• CrossChainConfig.sol

• CrossChainConfigMessages.sol

• L1Coordinator.sol

• L2Coordinator.sol

• PausableOFT.sol

• PausableProxyOFT.sol

• PauseGuardian.sol

• BridgeDelegateReceiver.sol

• BridgeDelegateSender.sol

• GnosisBridgeSender.sol

• SimpleBridgeDelegateSender.sol

Aura Smart Contracts Commit ID: 3bfc8cb9ae76cbc7a8ba08b8717cefba0d17c82e

Also, the next contracts from convex are included Convex Smart Contracts

• BoosterLite.sol

• PoolManagerLite.sol

• BaseRewardPool4626.sol

• VoterProxyLite.sol

Convex Smart Contracts Commit ID: 3cd1ce3657bae8abb975b9dd06f28247c22880d3

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/aurafinance/aura-contracts/pull/202
https://github.com/aurafinance/aura-contracts/tree/3bfc8cb9ae76cbc7a8ba08b8717cefba0d17c82e/contracts/sidechain
https://github.com/aurafinance/convex-platform/pull/55
https://github.com/aurafinance/convex-platform/tree/3cd1ce3657bae8abb975b9dd06f28247c22880d3/

REMEDIATION COMMITS:

• Commit IDs:

• 5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

• 079274b5875ea20cefb32860556d1d61970a6c81

• 8e17d3dfab9272b84cdcd5cbe5d35f9356fd51b6

• 9198edb43afdc782d5ad5b28565a4e81234624bb

• b5baaa08f12078d8936ff0bfcf159eb901150e14

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/aurafinance/aura-contracts/commit/5f716ad8d0cf997e951d8d7d58dd7a2568d2658e
https://github.com/aurafinance/aura-contracts/commit/079274b5875ea20cefb32860556d1d61970a6c81
https://github.com/aurafinance/aura-contracts/commit/8e17d3dfab9272b84cdcd5cbe5d35f9356fd51b6
https://github.com/aurafinance/aura-contracts/commit/9198edb43afdc782d5ad5b28565a4e81234624bb
https://github.com/aurafinance/aura-contracts/pull/245/commits/b5baaa08f12078d8936ff0bfcf159eb901150e14

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the contracts’ solidity code and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the audit:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing with custom scripts. (Foundry).

• Static Analysis of security for scoped contract, and imported func-

tions manually.

• Testnet deployment (Anvil).

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

13

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

14

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

15

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

16

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

17

EX
EC

UT
IV

E
OV

ER
VI

EW

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 3 10

18

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

SETTING RECEIVER TO MSG.SENDER CAN
LOCK FUNDS PERMANENTLY

Medium (6.3) SOLVED - 06/09/2023

DO NOT DECREASE INTERNAL TOTAL
SUPPLY IF RESCUED TOKEN IS NOT

INNER TOKEN
Low (2.3) SOLVED - 06/09/2023

STAKEALL FUNCTION CAN STAKE WRONG
AMOUNT

Low (2.3) SOLVED - 06/09/2023

CONTROL toAddress SIZE Low (2.3) RISK ACCEPTED

MEASURE BALANCE FOR REWARD
DISTRUBUTION

Informational
(0.0)

ACKNOWLEDGED

EVENT IS NOT EMITTED CORRECTLY ON
HARVEST FUNCTION

Informational
(0.0)

SOLVED - 06/09/2023

FUNCTIONS SHOULD BE PAUSABLE
Informational

(0.0)
SOLVED - 06/09/2023

CHANGE STRINGS FOR CUSTOM ERRORS TO
SAVE GAS

Informational
(0.0)

ACKNOWLEDGED

LACK OF REENTRANCY PROTECTION
Informational

(0.0)
SOLVED - 06/09/2023

INCONSISTENT NAMING CONVENTION
Informational

(0.0)
ACKNOWLEDGED

LACK OF UPGRADABILITY PATTERN
Informational

(0.0)
ACKNOWLEDGED

CENTRALIZATION RISK
Informational

(0.0)
ACKNOWLEDGED

EXTERNAL CALL ON LOOP
Informational

(0.0)
ACKNOWLEDGED

LACK OF TWO STEP OWNERSHIP TRANSFER
Informational

(0.0)
ACKNOWLEDGED

19

EX
EC

UT
IV

E
OV

ER
VI

EW

20

FINDINGS & TECH
DETAILS

4.1 (HAL-01) SETTING RECEIVER TO
MSG.SENDER CAN LOCK FUNDS
PERMANENTLY - MEDIUM (6.3)

Description:

The function lock from the contract AuraOFT.sol uses the msg.sender as

payload parameter to send the address through LayerZero to indicate the

contract of the main chain the address that can withdraw the specified

amount of tokens from the Locker.sol contract.

The addresses on a side chain do not need to correspond in all cases with

the address on the other chain. This situation is specific for smart

contracts. So, if this function is used through an SC, the tokens may

get locked in the ‘Locker’ without the chance of recovering it.

Code Location:

Listing 1: AuraOFT.sol (Line 63)

59 function lock(uint256 _cvxAmount) external payable {

60 require(_cvxAmount > 0, "!amount");

61 _debitFrom(msg.sender , canonicalChainId , bytes(""), _cvxAmount

ë);

62

63 bytes memory payload = CCM.encodeLock(msg.sender , _cvxAmount);

64

65 CrossChainConfig.Config memory config = configs[

ë canonicalChainId][AuraOFT.lock.selector];

66

67 _lzSend(

68 canonicalChainId , // //////// Parent chain ID

69 payload , // ///////////////// Payload

70 payable(msg.sender), // ///// Refund address

71 config.zroPaymentAddress , // ZRO payment address

72 config.adapterParams , ////// Adapter params

73 msg.value // //////////////// Native fee

74);

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75

76 emit Locked(msg.sender , _cvxAmount);

77 }

BVSS:

AO:A/AC:L/AX:M/C:N/I:N/A:N/D:H/Y:N/R:N/S:C (6.3)

Recommendation:

Consider implementing a receiver address as a parameter for the lock

function.

Remediation Plan:

SOLVED: The Aura Finance team solved the issue by adding a receiver

address as a parameter on the following commit ID:

• 5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/commit/5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

4.2 (HAL-02) DO NOT DECREASE
INTERNAL TOTAL SUPPLY IF RESCUED
TOKEN IS NOT INNER TOKEN - LOW (2.3)

Description:

The function rescue from the AuraBalProxyOFT.sol contract is implemented

to allow the owner of the contract to give back the tokens to a user

in case of an accidental transfer to the contract. This function allows

transferring any token in the contract to the specified address.

However, the function subtracts the indicated amount as parameter to the

internalTotalSupply. So, if the token is not the inner token, this may

cause the contract to stop working in the long term.

Code Location:

Listing 2: AuraBalProxyOFT.sol (Line 328)

318 function rescue(

319 address _token ,

320 address _to ,

321 uint256 _amount

322) external override {

323 require(msg.sender == sudo , "!sudo");

324

325 // Adjust the internalTotalSupply. This means we have to

ë harvest and process

326 // any rewards if we want to rescue the entire

ë underlyingBalance of the bridge

327 // otherwise this will underflow

328 internalTotalSupply -= _amount;

329

330 if (_token == address(innerToken)) {

331 _withdraw(_amount);

332 }

333 IERC20(_token).safeTransfer(_to , _amount);

334 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:H/R:N/S:C (2.3)

Recommendation:

Consider placing the subtraction inside the if statement, to ensure the

correct handling of the internalTotalSupply. Moreover, it can also be

considered a third case, where the inner token is stacked on the contract

but is not inside the vault, so it will not be required to do the

subtraction, Although it is the inner token.

The next code snippets illustrate the first suggested approach.

Listing 3: AuraBalProxyOFT.sol (Line 329)

318 function rescue(

319 address _token ,

320 address _to ,

321 uint256 _amount

322) external override {

323 require(msg.sender == sudo , "!sudo");

324

325 // Adjust the internalTotalSupply. This means we have to

ë harvest and process

326 // any rewards if we want to rescue the entire

ë underlyingBalance of the bridge

327 // otherwise this will underflo

328 if (_token == address(innerToken)) {

329 internalTotalSupply -= _amount;

330 _withdraw(_amount);

331 }

332

333 IERC20(_token).safeTransfer(_to , _amount);

334 }

Also, as suggested, there can exist other mitigation that also evaluates

if the innerToken is inside the vault.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 4: AuraBalProxyOFT.sol (Lines 322,329)

318 function rescue(

319 address _token ,

320 address _to ,

321 uint256 _amount

322 bool insideVault;

323) external override {

324 require(msg.sender == sudo , "!sudo");

325

326 // Adjust the internalTotalSupply. This means we have to

ë harvest and process

327 // any rewards if we want to rescue the entire

ë underlyingBalance of the bridge

328 // otherwise this will underflo

329 if (_token == address(innerToken) && insideVault) {

330 internalTotalSupply -= _amount;

331 _withdraw(_amount);

332 }

333

334 IERC20(_token).safeTransfer(_to , _amount);

335 }

Remediation Plan:

SOLVED: The Aura Finance team solved the issue by moving the storage

update inside the if statement on the following commit ID:

• 5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/commit/5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

4.3 (HAL-03) STAKEALL FUNCTION CAN
STAKE WRONG AMOUNT - LOW (2.3)

Description:

The _stakeAll function from the AuraBalProxyOFT.solcontract stakes all

the balance of the inner token in the vault. However, this can amount can

be different from the actual amount transferred, measured on the trace of

the execution by the inherited _debitFrom function from the ProxyOFT.sol

contract.

This can create accounting problems on the internalTotalSupply state

variable and, moreover, affect the whole bridging system.

Code Location:

Listing 5: AuraBalProxyOFT.sol

359 function _stakeAll () internal {

360 uint256 amount = innerToken.balanceOf(address(this));

361 IGenericVault(vault).deposit(amount , address(this));

362 }

Listing 6: AuraBalProxyOFT.sol (Lines 172,174)

166 function _debitFrom(

167 address _from ,

168 uint16 _srcChainId ,

169 bytes memory _toAddress ,

170 uint256 _amount

171) internal override returns (uint256) {

172 uint256 amount = super._debitFrom(_from , _srcChainId ,

ë _toAddress , _amount);

173 internalTotalSupply += amount;

174 _stakeAll ();

175 return amount;

176 }

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 7: ProxyOFT.sol (Line 36)

27 function _debitFrom(

28 address _from ,

29 uint16 ,

30 bytes memory ,

31 uint256 _amount

32) internal virtual override returns (uint256) {

33 require(_from == _msgSender (), "ProxyOFT: owner is not send

ë caller");

34 uint256 before = innerToken.balanceOf(address(this));

35 innerToken.safeTransferFrom(_from , address(this), _amount);

36 return innerToken.balanceOf(address(this)) - before;

37 }

Listing 8: OFCore.sol (Line 83)

72 function _send(

73 address _from ,

74 uint16 _dstChainId ,

75 bytes memory _toAddress ,

76 uint256 _amount ,

77 address payable _refundAddress ,

78 address _zroPaymentAddress ,

79 bytes memory _adapterParams

80) internal virtual {

81 _checkAdapterParams(_dstChainId , PT_SEND , _adapterParams ,

ë NO_EXTRA_GAS);

82

83 uint256 amount = _debitFrom(_from , _dstChainId , _toAddress ,

ë _amount);

84

85 bytes memory lzPayload = abi.encode(PT_SEND , _toAddress ,

ë amount);

86 _lzSend(_dstChainId , lzPayload , _refundAddress ,

ë _zroPaymentAddress , _adapterParams , msg.value);

87

88 emit SendToChain(_dstChainId , _from , _toAddress , amount);

89 }

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:H/R:N/S:C (2.3)

Recommendation:

Consider using the amount returned from the inherited _debitFrom function

to deposit in the vault the exact number of tokens transferred in the

transaction.

Remediation Plan:

SOLVED: The Aura Finance team fixed the issue by adding a return amount

to stakeAll function on the following commit ID:

• b5baaa08f12078d8936ff0bfcf159eb901150e14

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/pull/245/commits/b5baaa08f12078d8936ff0bfcf159eb901150e14

4.4 (HAL-04) CONTROL toAddress
SIZE - LOW (2.3)

Description:

The functions sendFrom implemented on the contracts PausableProxyOFT and

PausableOFT allows the user to set an arbitrary value to the byte stream

parameter _toAddress. If this value is too long, the message may not be

received correctly on the destiny chain.

Although LayerZero RelayerV2 contract has a maximum size that avoids

breaking the communication, it is the responsibility of the protocol to

ensure a maximum toAddress size.

Code Location:

Listing 9: PausableProxyOFT.sol (Lines 130,137)

127 function sendFrom(

128 address _from ,

129 uint16 _dstChainId ,

130 bytes calldata _toAddress ,

131 uint256 _amount ,

132 address payable _refundAddress ,

133 address _zroPaymentAddress ,

134 bytes calldata _adapterParams

135) public payable override whenNotPaused {

136 super.sendFrom(_from , _dstChainId , _toAddress , _amount ,

ë _refundAddress , _zroPaymentAddress , _adapterParams);

137 }

Listing 10: PausableOFT.sol (Lines 25,31)

22 function sendFrom(

23 address _from ,

24 uint16 _dstChainId ,

25 bytes calldata _toAddress ,

26 uint256 _amount ,

27 address payable _refundAddress ,

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

28 address _zroPaymentAddress ,

29 bytes calldata _adapterParams

30) public payable override whenNotPaused {

31 super.sendFrom(_from , _dstChainId , _toAddress , _amount ,

ë _refundAddress , _zroPaymentAddress , _adapterParams);

32 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:H/R:N/S:C (2.3)

Recommendation:

Consider implementing a require statement that limits the maximum size

of the toAddress.

• Reference

Remediation Plan:

RISK ACCEPTED: The Aura Finance team has started communications with the

LayerZero team to ensure if it is really necessary to implement a control

for the parameter.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/sherlock-audit/2023-01-uxd-judging/issues/270

4.5 (HAL-05) MEASURE BALANCE FOR
REWARD DISTRUBUTION - INFORMATIONAL
(0.0)

Description:

The function _processHarvestableTokens on the AuraBalProxyOFT.sol con-

tract iterates over the extra reward tokens and calls the getReward

function from the vault. This function transfers all the rewards to the

AuraBalProxyOFT contract. Then this contract uses its balance of this

token to measure the obtained rewards.

However, the contract may contain tokens sent accidentally to this con-

tract and count them as rewards. This can generate a cascade effect of

bad accounting on the overall system functionality.

Code Location:

Listing 11: AuraBalProxyOFT.sol (Lines 391,392)

367 function _processHarvestableTokens () internal returns (

ë HarvestToken [] memory harvestTokens) {

368 // Set up an array to contain all the tokens that need to be

ë harvested

369 // this will be all the extra rewards tokens and auraBAL

370 uint256 extraRewardsLength = IGenericVault(vault).

ë extraRewardsLength ();

371 harvestTokens = new HarvestToken [](extraRewardsLength + 1);

372

373 // Add auraBAL as the first reward token to be harvested

374 //

375 // To calculate rewards we need to know the delta between

ë auraBAL on the sidechains

376 // and the auraBAL available on this bridge contract.

377 //

378 // - internalTotalSupply: auraBAL supply transferred to L2s

379 // - underlyingBalance: auraBAL balance of the bridge in the

ë vault

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

380 // - totalClaimable: auraBAL that is claimable since the

ë last harvest

381 uint256 underlyingBalance = IGenericVault(vault).

ë balanceOfUnderlying(address(this));

382 uint256 rewards = underlyingBalance - internalTotalSupply -

ë totalClaimable[address(innerToken)];

383 harvestTokens [0] = HarvestToken(address(innerToken), rewards);

384

385 // Loop through the extra reward token on the vault and add

ë them to the

386 // harvestTokens array for processing

387 for (uint256 i = 0; i < extraRewardsLength; i++) {

388 address extraRewards = IGenericVault(vault).extraRewards(i

ë);

389 address rewardToken = IVirtualRewards(extraRewards).

ë rewardToken ();

390 IVirtualRewards(extraRewards).getReward ();

391 uint256 balance = IERC20(rewardToken).balanceOf(address(

ë this));

392 // Part of the balance is sat in the contract waiting to

ë be claimable.

393 // Subtract that from the current balance to get the newly

ë harvested rewards

394 uint256 rewardAmount = balance.sub(totalClaimable[

ë rewardToken]);

395 harvestTokens[i + 1] = HarvestToken(rewardToken ,

ë rewardAmount);

396 }

397 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to check the balance before and after calling the

getReward function to obtain the exact amount of tokens obtained as

rewards.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team stated that if AURA tokens are sent

accidentally to the contract they will be distributed as rewards and that

the rescue function is not designed for avoiding that.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.6 (HAL-06) EVENT IS NOT EMITTED
CORRECTLY ON HARVEST FUNCTION -
INFORMATIONAL (0.0)

Description:

The harvest function of the AuraBalProxyOFT.sol contract emits an event

at the end of the execution. However, this event does not reflect any of

the handled data, except for an input parameter of the function.

This function receives an array of unsigned integers and an unsigned

integer as input parameter. The array should contain the values of the

total amounts of auraBal tokens on each sidechain. On the other hand,

the other parameter should be the sum of all individual amounts from the

array. The function harvests the rewards from the vaults and stores on

state variables the amount corresponding to each chain according to the

percentage that each chain has.

Code Location:

Listing 12: AuraBalProxyOFT.sol (Line 245)

213 function harvest(uint256 [] memory _totalUnderlying , uint256

ë _totalUnderlyingSum) external {

214 require(authorizedHarvesters[msg.sender], "!harvester");

215

216 uint256 srcChainIdsLen = harvestSrcChainIds.length;

217 require(srcChainIdsLen == _totalUnderlying.length , "!parity");

218

219 HarvestToken [] memory harvestTokens =

ë _processHarvestableTokens ();

220

221 // For each chain we are sending rewards to loop through the

ë harvestable

222 // tokens and add the proportional rewards to the claimable

ë mapping

223 //

224 // Keep track of the sum of the totalUnderlying to verify the

ë user input

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

225 // _totalUnderlyingSum is correct

226 uint256 harvestTokenslen = harvestTokens.length;

227 for (uint256 j = 0; j < harvestTokenslen; j++) {

228 HarvestToken memory harvestToken = harvestTokens[j];

229 uint256 totalHarvested = 0;

230 uint256 accUnderlying = 0;

231

232 for (uint256 i = 0; i < srcChainIdsLen; i++) {

233 uint256 totalUnderlying = _totalUnderlying[i];

234 uint256 amount = harvestToken.rewards.mul(

ë totalUnderlying).div(_totalUnderlyingSum);

235

236 totalHarvested += amount;

237 accUnderlying += totalUnderlying;

238

239 claimable[harvestToken.token][harvestSrcChainIds[i]]

ë += amount;

240 }

241

242 totalClaimable[harvestToken.token] += totalHarvested;

243 require(accUnderlying == _totalUnderlyingSum , "!sum");

244 }

245 emit Harvest(msg.sender , _totalUnderlyingSum);

246 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding useful information to the emitted event.

Remediation Plan:

SOLVED: The Aura Finance team fixed the issue by adding the event and

require on the last loop, avoiding emitting it when the array is empty

and only emitting it once on commit ID:

- 079274b5875ea20cefb32860556d1d61970a6c81

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/commit/079274b5875ea20cefb32860556d1d61970a6c81

4.7 (HAL-07) FUNCTIONS SHOULD BE
PAUSABLE - INFORMATIONAL (0.0)

Description:

The contracts AuraBalProxyOFT.sol and AuraOFT.sol inherited from

PauseGuardian.sol contract. However, there are some functions that are

not pausable and should be considered to implement the whenNotPaused

modifier. These functions are:

• processClaimable from AuraBalProxyOFT.sol.

• lock from AuraOFT.sol.

On the other hand, the coordinators (L1Coordinator and L2Coordinator)

contracts do not have any mechanism to be paused. However, as these

contracts are mainly interacting with other protocol components, they

could not require any pausable functionality.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider reviewing the pausable security model and implementing it if

required on other functions.

Remediation Plan:

SOLVED: The Aura Finance team fixed the issue by adding pausable modifiers

to the functions on commit IDS:

• 8e17d3dfab9272b84cdcd5cbe5d35f9356fd51b6

• 9198edb43afdc782d5ad5b28565a4e81234624bb

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/commit/8e17d3dfab9272b84cdcd5cbe5d35f9356fd51b6
https://github.com/aurafinance/aura-contracts/commit/9198edb43afdc782d5ad5b28565a4e81234624bb

4.8 (HAL-08) CHANGE STRINGS FOR
CUSTOM ERRORS TO SAVE GAS -
INFORMATIONAL (0.0)

Description:

Custom errors are available from Solidity version 0.8.4. Custom errors

save ~50 gas each time they are hit by avoiding having to allocate and

store the revert string. Not defining strings also saves deployment gas.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider replacing all revert strings with custom errors.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledge the issue.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth
https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth

4.9 (HAL-09) LACK OF REENTRANCY
PROTECTION - INFORMATIONAL (0.0)

Description:

The current contracts do not implement re-entrancy protection. Although

it’s true that it has not been found any exploitable vector, the contracts

sending messages through LayerZero, give back the execution to the caller

on several functions.

The smart contracts follow strictly the Checks Effects Interactions pat-

tern; however, it is still recommended to enforce the non-re-entrant

modifier to all sensible functions.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding the non-re-entrant modifier to all sensible functions.

Remediation Plan:

SOLVED: The Aura Finance team solved the issue by adding reentrance guards

on commit ID:

- 5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/aurafinance/aura-contracts/commit/5f716ad8d0cf997e951d8d7d58dd7a2568d2658e

4.10 (HAL-10) INCONSISTENT NAMING
CONVENTION - INFORMATIONAL (0.0)

Description:

The naming convention across the different files on the repository,

including tests and deployments also, mixes the variable naming between

Aura and Convex.

This makes it easier to create bugs due to confusions on the development

side. Moreover, it makes the code harder to understand for the auditors

and other parties.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Design a style guide and a consistent naming convention across the whole

project.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged the risk of the issue.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.11 (HAL-11) LACK OF UPGRADABILITY
PATTERN - INFORMATIONAL (0.0)

Description:

The current version of the project does not allow contracts to be upgraded.

This can be useful either to fix potential unwanted behaviors and also

to add new functionalities in future releases of the protocol.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider adding proxy contracts that allow contracts to be upgradable.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged the risk of the issue.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.12 (HAL-12) CENTRALIZATION RISK -
INFORMATIONAL (0.0)

Description:

The current protocol relies on several multisig wallets, as well as

some EOAs that can perform maintenance tasks over the smart contracts.

The usage of multisigs allows avoiding single points of failure, which

increases the security permission model.

However, it is important to notice that in functions such as harvest

from the AuraBalProxyOFT.sol contract, if parameters are introduced

incorrectly, users’ yields can be affected. On the other hand, all the

bests efforts from the Aura Finance team are set to make the security

permission model work as always expected in favor of the users.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider a future plan that may allow the protocol to work as autonomous

as possible. Nonetheless, this is a design decision and the issue does

not represent any threat by itself.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged the risk of the issue.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.13 (HAL-13) EXTERNAL CALL ON
LOOP - INFORMATIONAL (0.0)

Description:

External calls inside a loop increase gas usage or might lead to a

denial-of-service attack. The function _processHarvestableTokens iter-

ates through the extraRewardsLength that corresponds to the number of

tokens set as extra rewards on the vault.

It is important to remark that, as the Aura team explained, there should

not be more than one token as an extra reward.

Code Location:

Listing 13: AuraBalProxyOFT.sol

388 for (uint256 i = 0; i < extraRewardsLength; i++) {

389 address extraRewards = IGenericVault(vault).extraRewards(i);

390 address rewardToken = IVirtualRewards(extraRewards).

ë rewardToken ();

391 IVirtualRewards(extraRewards).getReward ();

392 uint256 balance = IERC20(rewardToken).balanceOf(address(this))

ë ;

393 // Part of the balance is sat in the contract waiting to be

ë claimable.

394 // Subtract that from the current balance to get the newly

ë harvested rewards

395 uint256 rewardAmount = balance.sub(totalClaimable[rewardToken

ë]);

396 harvestTokens[i + 1] = HarvestToken(rewardToken , rewardAmount)

ë ;

397 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to set the max length to which a for loop can iterate.

If possible, use pull over push strategy for external calls.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged the risk of the issue.

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.14 (HAL-14) LACK OF TWO STEP
OWNERSHIP TRANSFER - INFORMATIONAL
(0.0)

Description:

The current ownership transfer process for all the contracts inheriting

from Ownable involves the current owner calling the transferOwnership()

function:

Listing 14: Ownable.sol

97 function transferOwnership(address newOwner) public virtual

ë onlyOwner {

98 require(newOwner != address (0), "Ownable: new owner is the

ë zero address");

99 _setOwner(newOwner);

100 }

If the nominated EOA account is not a valid account, it is entirely possi-

ble that the owner may accidentally transfer ownership to an uncontrolled

account, losing the access to all functions with the onlyOwner modifier.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to implement a two-step process where the owner nominates

an account and the nominated account needs to call an acceptOwnership()

function for the transfer of the ownership to fully succeed. This ensures

the nominated EOA account is a valid and active account.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.3/contracts/access/Ownable.sol#L61-L64

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged the risk of the issue.

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

46

RECOMMENDATIONS
OVERVIEW

1. Allow users to set a receiver address when locking funds from side

chain to main chain.

2. Do not reduce the internal total supply state variable if it is not

needed on the rescue function.

3. Measure the balance delta when harvesting rewards to store the

appropriate values on the state variables.

4. Do not stake entire balance and use the returned value calculated

during the function execution.

5. Limit the maximum _toAddress size as suggested from LayerZero team.

6. Consider more valuable information to emit on the harvest event.

7. Consider adding the pausable modifier to other sensitive functions.

8. Consider adding reentrancy protection.

9. Consider establishing a consistent naming convention across the

whole project.

47

RE
CO

MM
EN

DA
TI

ON
S

OV
ER

VI
EW

48

AUTOMATED TESTING

6.1 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

AuraBalProxyOFT.sol

L1Coordinator.sol

49

AU
TO

MA
TE

D
TE

ST
IN

G

PausableProxyOFT.sol

ProxyOFT.sol

• No major issues found by MythX.

50

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	RECOMMENDATIONS OVERVIEW
	AUTOMATED TESTING
	AUTOMATED SECURITY SCAN
	Description
	MythX results

