
Aura Finance

Smart Contract Security Assessment

June 16, 2023

Prepared for:

Aura Finance

Prepared by:

Katerina Belotskaia and Ulrich Myhre

Zellic Inc.

Contents

About Zellic 3

1 Executive Summary 4

1.1 Goals of the Assessment . 4

1.2 Non-goals and Limitations . 4

1.3 Results . 4

2 Introduction 6

2.1 About Aura Finance . 6

2.2 Methodology . 6

2.3 Scope . 7

2.4 Project Overview . 9

2.5 Project Timeline . 9

3 Detailed Findings 10

4 Discussion 11

4.1 The protectAddPool is unsafe . 11

4.2 Withdrawal of funds from a shut down pool 12

5 Threat Model 14

5.1 Module: AuraBalProxyOFT.sol . 14

5.2 Module: AuraBalRewardPool.sol . 15

5.3 Module: AuraOFT.sol . 17

5.4 Module: AuraVestedEscrow.sol . 18

5.5 Module: BaseRewardPool4626.sol . 19

Zellic 1 Aura Finance

5.6 Module: BoosterLite.sol . 21

5.7 Module: ExtraRewardsDistributor.sol . 25

5.8 Module: L1Coordinator.sol . 28

5.9 Module: PausableOFT.sol . 30

5.10 Module: PausableProxyOFT.sol . 30

5.11 Module: PoolManagerLite.sol . 31

5.12 Module: VirtualBalanceRewardPool.sol 32

6 Audit Results 34

6.1 Disclaimer . 34

Zellic 2 Aura Finance

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.

Zellic 3 Aura Finance

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

1 Executive Summary

Zellic conducted a security assessment for Aura Finance from May 30th to June 8th,
2023. During this engagement, Zellic reviewed Aura Finance’s code for security vul-
nerabilities, design issues, and general weaknesses in security posture.

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to an-
swer. These questions are agreed upon through close communication between Zellic
and the client. In this assessment, we sought to answer the following questions:

• Could a mint rate of AURA on the sidechains exceed available AURA?
• Could a malicious message trigger a lockup of funds?
• Could a malicious message lead to unallowed obtainment of funds?
• Do the changes implemented to Convex-ETH contracts disrupt the operation of
the protocol in any way?

• Could an on-chain attacker drain the vaults?

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• The codebase that has not been modified
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.

1.3 Results

During our assessment on the scoped Aura Finance contracts, we discovered no find-
ings.

However, Zellic recorded its notes and observations from the assessment for Aura
Finance’s benefit in the Discussion section (4) at the end of the document.

Zellic 4 Aura Finance

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 0

Low 0

Informational 0

Zellic 5 Aura Finance

2 Introduction

2.1 About Aura Finance

Aura Finance is a protocol built on top of the Balancer system to provide maximum
incentives to Balancer liquidity providers and BAL stakers (into veBAL) through social
aggregation of BAL deposits and Aura’s native token.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses
primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. Depending on the engagement, wemay also employ sophisticated ana-
lyzers such as model checkers, theorem provers, fuzzers, and so on as necessary. We
also perform a cursory review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unre-
alistic tokenomics or dangerous arbitrage opportunities. To the best of our abilities,
time permitting, we also review the contract logic to ensure that the code implements
the expected functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the con-
tract’s interaction with the broader DeFi ecosystem. Time permitting, we review the
contracts’ external interactions and summarize the associated risks: for example, flash
loan attacks, oracle price manipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the code base in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so on.

Zellic 6 Aura Finance

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact. Instead, we assign
it on a case-by-case basis based on our judgment and experience. Both the severity
and likelihood of an issue affect its impact. For instance, a highly severe issue’s im-
pact may be attenuated by a low likelihood. We assign the following impact ratings
(ordered by importance): Critical, High, Medium, Low, and Informational.

Zellic organizes its reports such that themost important findings come first in the doc-
ument, rather than being strictly ordered on impact alone. Thus, we may sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on various soft factors, like our clients’ threat models,
their business needs, and so on. We aim to provide useful and actionable advice to
our partners considering their long-term goals, rather than a simple list of security
issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Aura Finance Contracts

Repositories https://github.com/aurafinance/aura-contracts/pull/202

https://github.com/aurafinance/convex-platform/pull/55

Versions aura-contracts: 843cc67b154c2b590fb62f6c95811bfb567ea8b3

convex-platform: 49a83c027aeb34173678704c09af6242f762e787

Programs • BaseRewardPool.sol

• BaseRewardPool4626.sol

• BoosterLite.sol

• BoosterOwnerLite.sol

• PoolManagerLite.sol

• VirtualBalanceRewardPool.sol

• VoterProxyLite.sol

• GenericVault.sol

• SimpleStrategy.sol

Zellic 7 Aura Finance

https://github.com/aurafinance/aura-contracts/pull/202
https://github.com/aurafinance/convex-platform/pull/55

• Strategy.sol

• LzLib.sol

• LzApp.sol

• NonblockingLzApp.sol

• LZEndpointMock.sol

• OFT.sol

• OFTCore.sol

• ProxyOFT.sol

• AuraBalOFT.sol

• AuraBalProxyOFT.sol

• AuraOFT.sol

• AuraProxyOFT.sol

• Create2Factory.sol

• CrossChainConfig.sol

• CrossChainMessages.sol

• L1Coordinator.sol

• L2Coordinator.sol

• PausableOFT.sol

• PausableProxyOFT.sol

• PauseGuardian.sol

• BridgeDelegateReceiver.sol

• BridgeDelegateSender.sol

• GnosisBridgeSender.sol

• SimpleBridgeDelegateSender.sol

Type Solidity

Platform EVM-compatible

Zellic 8 Aura Finance

2.4 Project Overview

Zellicwas contracted to performa security assessmentwith two consultants for a total
of two and a half person-weeks. The assessment was conducted over the course of
eight calendar days.

Contact Information

The following project manager was associated with the engagement:

Chad McDonald, Engagement Manager
chad@zellic.io

The following consultants were engaged to conduct the assessment:

Katerina Belotskaia, Engineer
kate@zellic.io

Ulrich Myhre, Engineer
unblvr@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

May 30, 2023 Kick-off call

May 30, 2023 Start of primary review period

June 8, 2023 End of primary review period

Zellic 9 Aura Finance

mailto:chad@zellic.io
mailto:kate@zellic.io
mailto:unblvr@zellic.io

3 Detailed Findings

Wediscovered no significant security vulnerabilities during this assessment; however,
please see the Discussion section (4) for our notes and observations.

Zellic 10 Aura Finance

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 The protectAddPool is unsafe

PoolManagerLite.sol has ported over a feature from the initial pool manager that al-
lows the operator role to remove authentication for the function addPool.

function addPool(address _gauge, uint256 _stashVersion)
external returns (bool) {

return _addPool(_gauge, _stashVersion);
}

function _addPool(address _gauge, uint256 _stashVersion)
internal returns (bool) {

require(!IPools(booster).gaugeMap(_gauge), “already registered
gauge”);

require(!isShutdown, “shutdown”);

if (protectAddPool) {
require(msg.sender =) operator, “!auth”);

}

address lptoken = ICurveGauge(_gauge).lp_token();
require(!IPools(booster).gaugeMap(lptoken), “already registered

lptoken”);

return IPools(booster).addPool(lptoken, _gauge, _stashVersion);
}

By default this is on, but we believe this should never be disabled. Giving everyone
the possibility to add pools leads to a few dangerous scenarios.

The IPools(booster).addPool(lptoken, _gauge, _stashVersion) ends up doing pool
Info.push of a PoolInfo object. There are no checks on the _gauge param except to
check if it is already added and nonzero. The PoolInfo object can only ever be pushed
to and individual pools can be shut down, but items are never popped off. In functions

Zellic 11 Aura Finance

like shutdownSystem, this array is iterated over.

function shutdownSystem() external {
require(msg.sender =) owner, “!auth”);
isShutdown = true;

for (uint256 i = 0; i < poolInfo.length; i+)) {
PoolInfo storage pool = poolInfo[i];
if (pool.shutdown) continue;

address token = pool.lptoken;
address gauge = pool.gauge;

/)withdraw from gauge
try IStaker(staker).withdrawAll(token, gauge) {

pool.shutdown = true;
} catch {}

}
}

If poolInfo is too large, the loop will run out of gas before it can finish. This blocks the
possibility to run shutdownSystem() if someone has spammed the pool manager with
random pools that implement the required view functions that are checked.

The same happens in BoosterOwnerLite.sol in its shutdownSystem() function, where it
loops to IOwner(booster).poolLength(). The consequence is the same, and shutting
down might be impossible or very costly in terms of gas.

When discussing the issue with Aura Finance, they mentioned that this functionality
can be removed, as the protection is always enabled in the sidechain.

4.2 Withdrawal of funds from a shut down pool

During the execution of the shutdownPool function, tokens are withdrawn from the
gauge contract and transferred to the address of the current contract. But since tr
y/catch is used, the pool will be successfully shut down even if the funds have not
been withdrawn. The withdrawn tokens can be received by users using the withdraw
function. The function withdraws tokens from the staker contract if the pool is not
shut down; otherwise, tokens are transferred from the current contract balance.

If the tokenswere notwithdrawnduring the shutdown, there are twopossible options.
Firstly, a second attempt to withdraw funds will not be possible and users will not be

Zellic 12 Aura Finance

able to receive tokens if the balance of the contract is empty. Secondly, even if the
contract owns lptoken tokens, users can receive other users’ tokens, for example,
withdrawn from the previous pool that was shut downwith the same lptoken but not
yet withdrawn by depositors.

Therefore, shutting down the pool without guaranteed receipt of the lptoken tokens
by the contract may lead to problems when withdrawing funds by users.

function shutdownPool(uint256 _pid) external nonReentrant returns(bool){
require(msg.sender=)poolManager, “!auth”);
PoolInfo storage pool = poolInfo[_pid];

/)withdraw from gauge
try IStaker(staker).withdrawAll(pool.lptoken,pool.gauge){
}catch{}

pool.shutdown = true;
gaugeMap[pool.gauge] = false;

emit PoolShutdown(_pid);
return true;

}

function withdraw(uint256 _pid, uint256 _amount)
public returns(bool){

_withdraw(_pid,_amount,msg.sender,msg.sender);
return true;

}

function _withdraw(uint256 _pid, uint256 _amount, address _from,
address _to) internal nonReentrant {

...))
if (!pool.shutdown) {

IStaker(staker).withdraw(lptoken,gauge, _amount);
}
...))
/)return lp tokens
IERC20(lptoken).safeTransfer(_to, _amount);
...))

}

Zellic 13 Aura Finance

5 Threat Model

This provides a full threat model description for various functions. As time permitted,
we analyzed each function in the smart contracts and created a written threat model
for some critical functions. A threat model documents a given function’s externally
controllable inputs and how an attacker could leverage each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat
model in this section does not necessarily suggest that a function is safe.

5.1 Module: AuraBalProxyOFT.sol

Function: processClaimable(address _token, uint16 _srcChainId)

Allows accounts from rewardReceiver mapping to claim the reward. Only owner is
able to add address to the rewardReceivermapping.

Inputs

• _token
– Control: Full control.

– Constraints: claimable[_token][_srcChainId] > 0.
– Impact: The address of reward tokens that will be claimed.

• _srcChainId
– Control: Full control.

– Constraints: claimable[_token][_srcChainId] > 0 .
– Impact: The source chain ID. The address of receiver is taken from reward

Receiver[_srcChainId] set by owner.

Branches and code coverage (including function calls)

Intended branches

• claimable[_token][_srcChainId] is reset.
4□ Test coverage

• totalClaimable[_token] is increased.
4□ Test coverage

Negative behavior

• rewardReceiver[_srcChainId] does not contain _srcChainId.

Zellic 14 Aura Finance

□ Negative test
• claimable[_token][_srcChainId] == 0.

4□ Negative test

Function call analysis

• _lzSend
– External/internal? Internal.

– Argument control? _srcChainId.
– Impact Send the innerToken reward to the receiver to the _srcChainId .

• IProxyOFT(oft).sendFrom
– External/internal? External.

– Argument control? _srcChainId.
– Impact Send the _token reward to the receiver to the _srcChainId.

5.2 Module: AuraBalRewardPool.sol

Function: stakeAll()

The same as the stake function, but amount is full with msg.sender’s stakingToken bal-
ance.

Function: stakeFor(address _for, uint256 _amount)

The same function as stake, but _balances, rewards, and userRewardPerTokenPaid is
updated for the _for address provided by caller. The stakingTokens are transferred
from the caller address.

Function: stake(uint256 _amount)

The msg.sender provides stakingToken to the current contract. The _totalSupply and
_balances of msg.sender is increased by _amount-provided tokens. Also, the updateRe
wardmodifier is triggered.

Inputs

• _amount
– Control: The caller has full control but cannot usemore tokens than owned.

– Constraints: If msg.sender owns less amount of stakingToken, transaction
will be reverted.

– Impact: The amount of staking tokens.

Zellic 15 Aura Finance

Branches and code coverage (including function calls)

Intended branches

• After first stake call, the rewards[msg.sender] is zero.
4□ Test coverage

• If the caller’s balance is nonzero, the rewards[msg.sender] is calculated properly.
□ Test coverage

Negative behavior

• Revert if msg.sender’s stakingToken balance is less than _amount.
□ Negative test

• _amount is zero.
4□ Negative test

Function call analysis

• stakingToken.safeTransferFrom(msg.sender, address(this), _amount)
– External/internal? External.

– Argument control? _amount.
– Impact Transfer stakingToken from msg.sender to current contract.

• updateReward(msg.sender)
– External/internal? Internal.

– Argument control? N/A.

– Impact Updates global lastUpdateTime and rewardPerTokenStored. Sets re
wards and userRewardPerTokenPaid of msg.sender.

Function: withdraw(uint256 amount, bool claim, bool lock)

Allows the caller to withdraw staking funds and claim reward.

Inputs

• amount
– Control: Controlled.

– Constraints: Cannot be more than _balances[msg.sender].
– Impact: The amount of stakingTokenwill be withdrawn.

• claim
– Control: Controlled.

– Constraints: N/A.

– Impact: If claim is true and lock is false, the reward will be transferred to
the msg.sender.

Zellic 16 Aura Finance

• lock
– Control: Controlled.

– Constraints: N/A.

– Impact: If claim is true and lock is true.

Branches and code coverage (including function calls)

Intended branches

• Withdraw amount without claim reward.
4□ Test coverage

• Withdraw amount with claim reward.
4□ Test coverage

• Withdraw amount with lock reward.
4□ Test coverage

Negative behavior

• Amount is zero.
4□ Negative test

• The amount is more than _balances[msg.sender].
□ Negative test

Function call analysis

• stakingToken.safeTransfer(msg.sender, amount)
– External/internal? External.

– Argument control? Amount cannot be more than _balances[msg.sender].
– Impact Transfer stakingToken to msg.sender.

5.3 Module: AuraOFT.sol

Function: lock(uint256 _cvxAmount)

Lock the OFT tokens of the _canonicalChainId.

Inputs

• _cvxAmount
– Control: Full control.

– Constraints: msg.sender should have more or an equal amount of tokens.
– Impact: The amount of tokens will be transferred to another chain.

Zellic 17 Aura Finance

Branches and code coverage (including function calls)

Intended branches

• The balance of msg.senderwas decreased by _cvxAmount.
□ Test coverage

• The totalSupply was increased by _cvxAmount
4□ Test coverage

Negative behavior

• msg.sender does not have enough tokens.
4□ Negative test

• _cvxAmount == 0.
4□ Negative test

• without fee
4□ Negative test

Function call analysis

• _debitFrom(msg.sender, canonicalChainId, bytes(“”), _cvxAmount) -> _debit
From -> _burn(_from, _amount)
– External/internal? Internal.

– Argument control? _cvxAmount
– Impact Burn the _cvxAmount amount of tokens from the msg.sender balance
before transfer to the canonicalChainId.

5.4 Module: AuraVestedEscrow.sol

Function: claim(bool _lock)

Allows to claim reward by recipient or lock it inside auraLocker contract.

Inputs

• _lock
– Control: Full.

– Constraints: N/A.

– Impact: If false reward, it will be transferred to the caller; otherwise, it will
be locked inside the auraLocker.

Zellic 18 Aura Finance

Branches and code coverage (including function calls)

Intended branches

• If _lock is true, funds were locked.
□ Test coverage

• If _lock is false, funds were transferred to the caller.
4□ Test coverage

Negative behavior

• Claimable is zero.
□ Negative test

• AuraLocker is zero
□ Negative test

Function call analysis

• _claim(msg.sender, _lock) -> available(_recipient)
– External/internal? Internal.

– Argument control? N/A.

– Impact Return available amounts of funds for claim that does not include
already claimed funds.

• _claim(msg.sender, _lock) -> auraLocker.lock(_recipient, claimable)
– External/internal? External.

– Argument control? N/A.

– Impact If _lock is true, then claimable fundswill be locked inside auraLocker
contract.

• _claim(msg.sender, _lock) -> rewardToken.safeTransfer(_recipient, claimab
le)
– External/internal? External.

– Argument control? N/A.

– Impact If _lock is true, then claimable funds will be transferred to the _rec
ipient.

5.5 Module: BaseRewardPool4626.sol

Function: transferFrom(address owner, address recipient, uint256 amount
)

Moves tokens from the sender to the given recipient, using the allowancemechanism.
The given amount is deducted from the caller’s allowance for the provided owner.

Zellic 19 Aura Finance

Inputs

• owner
– Control: Arbitrary.

– Constraints: Must be a valid entry in the _allowances 2D mapping; other-
wise, setting the new allowance will fail. Cannot be 0.

– Impact: Decides which allowance to use.
• recipient

– Control: Arbitrary.

– Constraints: Cannot be 0.

– Impact: Decides where the amount should be transferred.
• amount

– Control: Arbitrary.

– Constraints: Cannot be more than the actual allowance or the subtraction
will underflow and revert.

– Impact: Decides the amount to transfer and how much that will be left in
the allowance.

Branches and code coverage (including function calls)

Intended branches

• Transfer when token owner has enough balance.
4□ Test coverage

• Transfer when the spender has enough approved balance.
4□ Test coverage

Negative behavior

• Transfer when the spender does not have enough approved balance.
4□ Negative test

• Transfer when token owner does not have enough balance.
4□ Negative test

• Transfer from address(0).
4□ Negative test

• Transfer to address(0).
4□ Negative test

Function call analysis

• rootFunction -> _transfer(args)
– What is controllable? Everything.

Zellic 20 Aura Finance

– If return value controllable, how is it used and how can it go wrong? Not
checked.

– What happens if it reverts, reenters, or does other unusual control flow?
New allowance is set before transfer, making reentrancy less useful. A re-
ward manager could add an extraReward that hooks every transfer before
the balances are updated.

5.6 Module: BoosterLite.sol

Function: addPool(address _lptoken, address _gauge, uint256 _stashVersi
on)

Creates all the contracts required for a new pool and adds them to the poolInfo list.
Can only be called by the pool manager. The pool ID is a sequential number that
corresponds to the index in the list. Note that the list can never remove items, so
care should be taken to limit the number of pools added for loops that require going
through every pool.

Inputs

• _lptoken
– Control: Arbitrary.

– Constraints: Cannot be 0.

– Impact: Decides which token to use in the pool.
• _gauge

– Control: Arbitrary.

– Constraints: Must be some gauge that passes the version test in CreateS-
tash.

– Impact: Decides which gauge contracts to use in, for example, the stash.
• _stashVersion

– Control: Arbitrary.

– Constraints: Must be 1, 2 or 3.

– Impact: Picks the expected stash version and does some checks to verify
that the gauge matches that version later.

Branches and code coverage (including function calls)

Intended branches

• Add single pool.
4□ Test coverage

Zellic 21 Aura Finance

• Add multiple pools.
4□ Test coverage

Negative behavior

• Called by someone who is not the pool manager.
□ Negative test

• Called during shutdown.
□ Negative test

• Called with gauge = address(0).
□ Negative test

• Called with lptoken = address(0).
□ Negative test

• Called with stash = address(0).
□ Negative test

• Called with bad or mismatching stash version.
□ Negative test

Function: depositAll(uint256 _pid, bool _stake)

Helper function for depositing the sender’s full balance to a gauge (specified by _pid).
Optionally stakes the minted DepositToken on BaseRewardPool.

Inputs

• _pid
– Control: Arbitrary.

– Constraints: Must be a valid entry in the poolInfo array, or balanceOf will
revert.

– Impact: Decides the pool to deposit to.
• _stake

– Control: Arbitrary.

– Constraints: Boolean.

– Impact: Decides if the deposit should be staked after minting.

Branches and code coverage (including function calls)

Intended branches

• Deposit with stake.
□ Test coverage

• Deposit without stake.

Zellic 22 Aura Finance

□ Test coverage

Negative behavior

• Deposit with invalid _pid.
□ Negative test

Function: deposit(uint256 _pid, uint256 _amount, bool _stake)

Deposits _amount to a gauge specified by _pid, then mints a DepositToken and option-
ally stakes it if _stake is true.

Inputs

• _pid
– Control: Arbitrary.

– Constraints: Cannot specify a shut down pool. If _pid is not in the poolInfo
array, the resulting empty struct will appear to be shut down.

– Impact: Decides the pool to deposit to.
• _amount

– Control: Arbitrary.

– Constraints: Cannot be more tokens than the user owns.

– Impact: Decides the amount of tokens to deposit/stake.
• _stake

– Control: Arbitrary.

– Constraints: Boolean.

– Impact: Chooses if the amount should be sent to the rewards contract on
behalf of the user.

Branches and code coverage (including function calls)

Intended branches

• Deposit with stake.
4□ Test coverage

• Deposit without stake.
4□ Test coverage

Negative behavior

• Deposit while pool is shut down.
□ Negative test

• Deposit while full shutdown is in effect.

Zellic 23 Aura Finance

□ Negative test
• Deposit to a gauge with incorrect settings (addr=0).

□ Negative test
• Deposit to a pool without a configured stash.

□ Negative test

Function: earmarkRewards(uint256 _pid)

Responsible for collecting the CRV from gauge and then redistributing to the correct
place. Pays the caller a fee to process this.

The function is a thin wrapper for _earmarkRewards(_pid), which claims CRV from the
staker, transfers idle CRV in the Booster to the treasury, and finally transfers it to the
LP provider reward contract. Incentives (fees) are paid to the caller and the lockers
reward contract.

Inputs

• _pid
– Control: Arbitrary.

– Constraints: Must be a valid pool ID in poolInfo.
– Impact: Decides which gauge to pull and redistribute CRV from.

Branches and code coverage (including function calls)

Intended branches

• Earmark rewards.
4□ Test coverage

• Caller earns CRV.
4□ Test coverage

• Call when there are idle rewards to transfer to treasury.
□ Test coverage

Negative behavior

• Call when pool is closed.
□ Negative test

• Call when stash is not set.
□ Negative test

• Call when there is nothing to earmark.
□ Negative test

Zellic 24 Aura Finance

Function: withdraw(uint256 _pid, uint256 _amount)

Passthrough function for _withdraw, which sets from and to to msg.sender.

Inputs

• _pid
– Control: Arbitrary.

– Constraints: Must be a a valid pool ID in poolInfo.
– Impact: Decides the token to withdraw and the gauge to withdraw it from.
This removes LP balance by burning amount from msg.sender and transfers
LP tokens back to msg.sender.

• _amount
– Control: Arbitrary.

– Constraints: Cannot exceed the amount of LP balance the sender is al-
lowed to burn.

– Impact: The amount of LP balance to exchange for LP tokens.

Branches and code coverage (including function calls)

Intended branches

• Withdraw from pool.
□ Test coverage

• Withdraw from this contract (in case of shutdown).
□ Test coverage

• Withdraw when a stash is defined.
□ Test coverage

Negative behavior

• Withdraw while pool is shut down.
□ Negative test

• Withdraw under a full shutdown.
□ Negative test

• Withdraw more than the sender has.
□ Negative test

5.7 Module: ExtraRewardsDistributor.sol

Zellic 25 Aura Finance

Function: addRewardToEpoch(address _token, uint256 _amount, uint256 _ep
och)

The same function as addReward, but it allows to control the _epoch amount.

Function: addReward(address _token, uint256 _amount)

Added reward tokens from the caller to the last epoch. The caller should bewhitelisted
by owner.

Inputs

• _token
– Control: Full control.

– Constraints: No.

– Impact: The reward token address.
• _amount

– Control: Full control.

– Constraints: Caller should have enough amount of tokens to transfer.

– Impact: The amount of reward tokens will be transferred.

Branches and code coverage (including function calls)

Intended branches

• The balance of msg.senderwas decreased by _amount.
4□ Test coverage

• The rewardDatawas updated properly.
4□ Test coverage

Negative behavior

• msg.sender is not whitelisted.
4□ Negative test

• _token is zero.
□ Negative test

• _amount is zero.
4□ Negative test

Function call analysis

• auraLocker.checkpointEpoch()
– External/internal?: External.

Zellic 26 Aura Finance

– Argument control?: N/A.

– Impact: Added new checkpoint.
• _addReward(_token, _amount, latestEpoch)

– External/internal?: External.

– Argument control?: _token and _amount.
– Impact: Add reward to the last epoch.

Function: getReward(address _account, address _token)

Allows msg.sender to claim reward calculated using the user balance locked inside the
auraLocker contract.

Inputs

• _account
– Control: Full control.

– Constraints: Should have nonzero auraLocker balance.

– Impact: The receiver of reward.
• _token

– Control: Full control.

– Constraints: If tokens are not addedusing the addReward function, the trans-
action will end without result.

– Impact: The address of reward token. It will be called to transfer reward
amount.

Branches and code coverage (including function calls)

Intended branches

• If msg.sender !) _account, _account received the reward.
□ Test coverage

• If msg.sender =) _account, _account received the reward.
4□ Test coverage

Negative behavior

• _account is zero.
□ Negative test

• _token is zero.
□ Negative test

Zellic 27 Aura Finance

Function call analysis

• _getReward -> _allClaimableRewards(_account, _token, _startIndex)
– External/internal?: Internal.

– Argument control?: _account, _token, and _startIndex.
– Impact: Returns the amount of tokens available for claim and index of last
rewarded epoch.

• _getReward -> IERC20(_token).safeTransfer(_account, claimableTokens)
– External/internal?: External.

– Argument control?: _account.
– Impact: Transfer reward to the _account.

Function: getReward(address _token, uint256 _startIndex)

The same function as getReward(address _account, address _token), but the reward
is calculated for the msg.sender address, and caller controls the index from which is
started by the checking for rewards.

5.8 Module: L1Coordinator.sol

Function: distributeAura(uint16 _srcChainId, address _sendFromZroPaymen
tAddress, byte[] _sendFromAdapterParams)

Function allows to transfer AURA tokens to another chain. Before the transfer, tokens
will be minted by calling IBooster(booster).distributeL2Fees(_feeAmount). Function
is available only for whitelisted distributor.

Inputs

• _srcChainId
– Control: Full control.

– Constraints: Should be whitelisted by owner as trusted chain.

– Impact: ID of the recipient chain.
• _sendFromZroPaymentAddress

– Control: Full control.

– Constraints: No checks.

– Impact: The address of the contract that will provide an LZ protocol fee
using the LZ tokens.

Zellic 28 Aura Finance

Branches and code coverage (including function calls)

Intended branches

• AURA tokens were distributed properly.
4□ Test coverage

Negative behavior

• feeDebtOf[_srcChainId] is zero.
4□ Negative test

• Caller is not whitelisted distributor.
4□ Negative test

Function call analysis

• _distributeAura -> IBooster(booster).distributeL2Fees(_feeAmount) -> IERC
20(crv).safeTransferFrom(bridgeDelegate, lockRewards, _lockIncentive)
– External/internal? External.

– Argument control? No.

– Impact Distribute fees.
• _distributeAura -> IBooster(booster).distributeL2Fees(_feeAmount) -> IERC

20(crv).safeTransferFrom(bridgeDelegate, stakerRewards, _stakerIncentive)
– External/internal? External.

– Argument control? No.

– Impact Distribute fees.
• _distributeAura -> IBooster(booster).distributeL2Fees(_feeAmount) -> ITok

enMinter(minter).mint(bridgeDelegate, eligibleForMint)
– External/internal? External.

– Argument control? No.

– ImpactMint CVX to current contract.
• _lzSend -> lzEndpoint.send

– External/internal? External.

– Argument control? _srcChainId.
– Impact On the side of L2Coordinator, there will be the triggered function

_nonblockingLzReceive that will increase the accAuraRewards.
• IOFT(auraOFT).sendFrom

– External/internal? External.

– Argument control? _sendFromZroPaymentAddress and _sendFromAdapterPar
ams.

– Impact Transfer auraAmount of AURA tokens to the _srcChainId.

Zellic 29 Aura Finance

5.9 Module: PausableOFT.sol

Function: sendFrom(address _from, uint16 _dstChainId, byte[] _toAddress
, uint256 _amount, address payable _refundAddress, address _zroPaymentA
ddress, byte[] _adapterParams)

Pausable wrapper over OFT.sendFrom.

5.10 Module: PausableProxyOFT.sol

Function: processQueued(uint256 _epoch, uint16 _srcChainId, address _to
, uint256 _amount, uint256 _timestamp)

Initiates the queued transfer, which is possible if enough time has passed after cre-
ation. The queue is added during the receiving process inside the _sendAck function.
After successful send, the queue is reset.

Function: rescue(address _token, address _to, uint256 _amount)

The sudo address can transfer any tokens from the current contract to an arbitrary
recipient. The sudo is set during deploy and cannot be changed.

Function: sendFrom(address _from, uint16 _dstChainId, byte[] _toAddress
, uint256 _amount, address payable _refundAddress, address _zroPaymentA
ddress, byte[] _adapterParams)

Wrapper under ProxyOFT.sendFrom() function. Added whenNotPausedmodifier and ou
tflow of currentEpoch is increased by the _amount value. Allows any caller to send to
another chain.

Inputs

• _from
– Control: Full control.

– Constraints: If _from !) msg.sender, transaction will be reverted inside Pr
oxyOFT._debitFrom.

– Impact: The receiver of innerToken.
• _dstChainId

– Control: Full control.

– Constraints: If _lzSend.trustedRemoteLookupmapping does not contain _d
stChainId, transaction will be reverted.

Zellic 30 Aura Finance

– Impact: ID of the destination chain to which the tokens will be transferred.
• _toAddress

– Control: Full control.

– Constraints: No checks.

– Impact: The address of the receiver of tokens in the _dstChainId network.
• _amount

– Control: Full control.

– Constraints: The _from account should have more or an equal amount of
tokens.

– Impact: The amount of innerToken that will be locked inside this contract
and transferred to another chain.

Branches and code coverage (including function calls)

Intended branches

• The balance of the contract increased by amount value.
□ Test coverage

• The balance of the from address decreased by amount value.
□ Test coverage

Negative behavior

• from !) msg.sender.
□ Negative test

• from does not have enough innerToken.
□ Negative test

• The unknown _dstChainId.
□ Negative test

Function call analysis

• OFTCore._send() -> ProxyOFT._debitFrom(address _from,uint16,bytes memory,
uint256 _amount) -> innerToken.safeTransferFrom(_from, address(this), _am
ount);
– External/internal? External.

– Argument control? _from and _amount.
– ImpactWill block the sent tokens inside this contract.

5.11 Module: PoolManagerLite.sol

Zellic 31 Aura Finance

Function: addPool(address _gauge, uint256 _stashVersion)

Adds a gauge to the pool using the provided stash version.

Inputs

• _gauge
– Control: Arbitrary.

– Constraints: The gauge address, nor its associated LP token, cannot already
be registered in the booster. If protectAddPool is enabled, the function can
only be called by the operator. The default is for this protection to be en-
abled.

– Impact: Decides the address of the gauge and picks the LP token to add.
• _stashVersion

– Control: Arbitrary.

– Constraints: Is supposed to be 1, 2, or 3. Otherwise, StashFactoryV2->Cr
eateStash will return address(0) or revert. The given version must have a
valid implementation registered in the stash factory.

– Impact: Decides which stash implementation to use.

Branches and code coverage (including function calls)

Negative behavior

• Try to add pool as normal user when protectAddPool is disabled.
4□ Negative test

• Add pool as normal user when protectAddPool is disabled.
□ Negative test

• Add pool when the everything is shut down.
□ Negative test

Function call analysis

• rootFunction -> IPools(booster).addPool(lptoken, _gauge, _stashVersion)
– What is controllable? Everything, provided gauge is controlled by caller.
There is no gauge whitelisting.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Return value is not checked.

5.12 Module: VirtualBalanceRewardPool.sol

Zellic 32 Aura Finance

Function: processIdleRewards()

Starts to process queued rewards, given that periodFinish is reached and there are
rewards queued.

Branches and code coverage (including function calls)

Intended branches

• Call when there are queued rewards.
□ Test coverage

Negative behavior

• Called when there are no queued rewards.
□ Negative test

• Called before periodFinish has passed.
□ Negative test

Function call analysis

• rootFunction -> notifyRewardAmount(queuedRewards)
– What is controllable? Nothing, queuedRewards is an internal variable.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
N/A.

Zellic 33 Aura Finance

6 Audit Results

At the time of our audit, the audited code was not deployed to mainnet EVM.

During our assessment on the scoped Aura Finance contracts, we discovered no find-
ings.

6.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
code added to the project after the audit version of our assessment. Furthermore,
because a single assessment can never be considered comprehensive, we always
recommend multiple independent assessments paired with a bug bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 34 Aura Finance

	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Aura Finance
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Discussion
	The protectAddPool is unsafe
	Withdrawal of funds from a shut down pool

	Threat Model
	Module: AuraBalProxyOFT.sol
	Module: AuraBalRewardPool.sol
	Module: AuraOFT.sol
	Module: AuraVestedEscrow.sol
	Module: BaseRewardPool4626.sol
	Module: BoosterLite.sol
	Module: ExtraRewardsDistributor.sol
	Module: L1Coordinator.sol
	Module: PausableOFT.sol
	Module: PausableProxyOFT.sol
	Module: PoolManagerLite.sol
	Module: VirtualBalanceRewardPool.sol

	Audit Results
	Disclaimer

