
Aura Finance
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: May 16th, 2022 - June 28th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) LACK OF TRANSFEROWNERSHIP PATTERN - LOW 14

Description 14

Risk Level 15

Recommendation 15

Remediation Plan 15

3.2 (HAL-02) DUPLICATE ENTRY IN THE VESTING DISTRIBUTION LIST - LOW

16

Description 16

Risk Level 17

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) MISTAKENLY SENT ERC20 TOKENS CAN NOT RESCUED IN THE

CONTRACTS - INFORMATIONAL 18

Description 18

Recommendation 18

1



Remediation Plan 18

3.4 (HAL-04) USING POSTFIX OPERATORS IN LOOPS - INFORMATIONAL 19

Description 19

Code Location 19

Proof of Concept 21

Risk Level 22

Recommendation 22

Remediation Plan 22

3.5 (HAL-05) ARRAY.LENGTH USED IN LOOP CONDITIONS - INFORMATIONAL

23

Description 23

Code Location 23

Proof of Concept 24

Risk Level 24

Recommendation 25

Remediation Plan 25

3.6 (HAL-06) USING != 0 CONSUMES LESS GAS THAN > 0 IN UNSIGNED

INTEGER VALIDATION - INFORMATIONAL 26

Description 26

Code Location 26

Proof of Concept 28

Risk Level 28

Recommendation 29

Remediation Plan 29

4 AUTOMATED TESTING 30

4.1 STATIC ANALYSIS REPORT 31

Description 31

2



Slither results 31

4.2 AUTOMATED SECURITY SCAN 35

Description 35

MythX results 35

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/20/2022 István Böhm

0.2 Document Updates 06/28/2022 István Böhm

0.3 Draft Review 06/30/2022 Gabi Urrutia

1.0 Remediation Plan 07/01/2022 István Böhm

1.1 Remediation Plan Review 07/01/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

István Böhm Halborn Istvan.Bohm@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Istvan.Bohm@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Aura Finance engaged Halborn to conduct a security audit on their smart

contracts beginning on May 16th, 2022 and ending on June 28th, 2022. The

security assessment was scoped to the smart contracts provided in the

contracts GitHub repository aurafinance/aura-contracts.

1.2 AUDIT SUMMARY

The team at Halborn was provided six weeks for the engagement and

assigned one full-time security engineer to audit the security of the

smart contract. The security engineer is a blockchain and smart-contract

security expert with advanced penetration testing, smart-contract

hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified few security risks that were accepted and

acknowledged by the Aura Finance team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/aurafinance/aura-contracts/tree/b67d5b7d7fb87455533b5376e7c20157a6fc4e8c


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

aura-contracts:

- Aura.sol

- AuraBalRewardPool.sol

- AuraClaimZap.sol

- AuraLocker.sol

- AuraMath.sol

- AuraMerkleDrop.sol

- AuraMinter.sol

- AuraPenaltyForwarder.sol

- AuraStakingProxy.sol

- AuraVestedEscrow.sol

- BalInvestor.sol

- BalLiquidityProvider.sol

- CrvDepositorWrapper.sol

- ExtraRewardsDistributor.sol

- RewardPoolDepositWrapper.sol

convex-platform:

- BaseRewardPool.sol

- VirtualBalanceRewardPool.sol

- ProxyFactory.sol

- DepositToken.sol

- ExtraRewardStashV3.sol

- RewardFactory.sol

- cCrv.sol

- BaseRewardPool4626.sol

- StashFactoryV2.sol

- PoolManagerSecondaryProxy.sol

- VoterProxy.sol

- Interfaces.sol

- TokenFactory.sol

- PoolManagerProxy.sol

9

EX
EC

UT
IV

E
OV

ER
VI

EW



- CrvDepositor.sol

- Booster.sol

- ConvexMasterChef.sol

- BoosterOwner.sol

- RewardHook.sol

- PoolManagerV3.sol

- ArbitartorVault.sol

Commit ID: b67d5b7d7fb87455533b5376e7c20157a6fc4e8c

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/aurafinance/aura-contracts/tree/b67d5b7d7fb87455533b5376e7c20157a6fc4e8c


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 2 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-03)
(HAL-04)
(HAL-05)
(HAL-06)

(HAL-02)

11

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - LACK OF TRANSFEROWNERSHIP
PATTERN

Low RISK ACCEPTED

HAL02 - DUPLICATE ENTRY IN THE
VESTING DISTRIBUTION LIST

Low RISK ACCEPTED

HAL03 - MISTAKENLY SENT ERC20 TOKENS
CAN NOT RESCUED IN THE CONTRACTS

Informational ACKNOWLEDGED

HAL04 - USING POSTFIX OPERATORS IN
LOOPS

Informational ACKNOWLEDGED

HAL05 - ARRAY.LENGTH USED IN LOOP
CONDITIONS

Informational ACKNOWLEDGED

HAL06 - USING != 0 CONSUMES LESS
GAS THAN > 0 IN UNSIGNED INTEGER

VALIDATION
Informational ACKNOWLEDGED

12

EX
EC

UT
IV

E
OV

ER
VI

EW



13

FINDINGS & TECH
DETAILS



3.1 (HAL-01) LACK OF
TRANSFEROWNERSHIP PATTERN - LOW

Description:

The current ownership transfer process for the Aura contracts inheriting

from Ownable involves the current owner calling the transferOwnership()

function:

Listing 1: Ownable.sol

71 function _transferOwnership(address newOwner) internal virtual

ë {

72 address oldOwner = _owner;

73 _owner = newOwner;

74 emit OwnershipTransferred(oldOwner , newOwner);

75 }

76 }

If the nominated account is not a valid account, it is entirely possible

that the owner may accidentally transfer ownership to an uncontrolled

account, losing the access to all functions with the onlyOwner modifier.

For example, in the case of the AuraLocker contract, if a not valid account

was assigned as a owner, administrative functions such as recovering LP

rewards from other systems or shutting down the contract will not be

possible.

This issue also applies to other types of privilege transfer methods,

like the setAdmin function in the AuraVestedEscrow contract:

Listing 2: AuraVestedEscrow.sol (Line 206)

79 function setAdmin(address _admin) external {

80 require(msg.sender == admin , "!auth");

81 admin = _admin;

82 }

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.4/contracts/access/Ownable.sol


Affected Contracts:

- aura-contracts/AuraClaimZap.sol

- aura-contracts/AuraLocker.sol

- aura-contracts/AuraPenaltyForwarder.sol

- aura-contracts/ExtraRewardsDistributor.sol

- aura-contracts/AuraVestedEscrow.sol

- convex-platform/Booster.sol

- convex-platform/ConvexMasterChef.sol

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to implement a two-step process where the owner nominates

an account and the nominated account needs to call an acceptOwnership()

function for the transfer of the ownership to fully succeed. This ensures

the nominated account is a valid and active account.

Remediation Plan:

RISK ACCEPTED: The Aura Finance team accepted the risk of this finding and

does not plan to correct it in the future in order to keep the difference

between Aura and Convex as minimal as possible to aid in manual reviews

and minimize the chance of introducing bugs.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) DUPLICATE ENTRY IN THE
VESTING DISTRIBUTION LIST - LOW

Description:

0xcc6548f1b572968f9539d604ec9ff4b933c1be74 address accidentally appeared

twice in the AURA vesting distribution list (tasks/deploy/mainnet-config

.ts).

Listing 3: tasks/deploy/mainnet-config.ts

170 // 24 MONTHS - 8.45%

171 {

172 period: ONE_WEEK.mul (104),

173 recipients: [

174 { address: "0xe3B6c287C1369C6A4fa8d4e857813695C52948EF",

ë amount: simpleToExactAmount (0.275 , 24) }, // Core team

175 { address: "0x023320e0C9Ac45644c3305cE574360E901c7f582",

ë amount: simpleToExactAmount (0.5, 24) }, // Core team

176 { address: "0xB1f881f47baB744E7283851bC090bAA626df931d",

ë amount: simpleToExactAmount (3.5, 24) }, // Core team

177 { address: "0xE4b32828B558F17BcaF5efD52f0C067dba38833c",

ë amount: simpleToExactAmount (0.45, 24) }, // Core team

178 { address: "0xcc6548f1b572968f9539d604ec9ff4b933c1be74",

ë amount: simpleToExactAmount (0.075 , 24) }, // Core team

179 { address: "0x51d63958a63a31eb4028917f049ce477c8dd07bb",

ë amount: simpleToExactAmount (0.5, 24) }, // Core team

180 { address: "0x3078c3b436511152d86675f9cbfd89ec1672f804",

ë amount: simpleToExactAmount (0.3, 24) }, // Core team

181 { address: "0x3000d9b2c0e6b9f97f30abe379eaaa8a85a04afc",

ë amount: simpleToExactAmount (0.325 , 24) }, // Core team

182 { address: "0x3CBFFF3E75881c1619eaa82DC724BDEE6fF6ED19",

ë amount: simpleToExactAmount (0.06, 24) }, // Core team

183 { address: "0xaf3824e8401299B25C4D59a8a035Cf9312a3B454",

ë amount: simpleToExactAmount (0.175 , 24) }, // Core team

184 { address: "0x738175DB2C999581f29163e6D4D3516Ad4aF8834",

ë amount: simpleToExactAmount (0.125 , 24) }, // Core team

185 { address: "0x0d9A5678E73e5BbC0ee09FAF8e550B196c76fDad",

ë amount: simpleToExactAmount (0.5, 24) }, // Core team

186 { address: "0x285b7EEa81a5B66B62e7276a24c1e0F83F7409c1",

ë amount: simpleToExactAmount (1.5, 24) }, // Core team

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



187 { address: "0xbee5a45271cc66a5b0e9dc4164a4f9df196d94fa",

ë amount: simpleToExactAmount (0.125 , 24) }, // Core team

188 { address: "0xcc6548f1b572968f9539d604ec9ff4b933c1be74",

ë amount: simpleToExactAmount (0.04, 24) }, // Core team

189 ],

190 },

Aura Finance used this list to fund recipients with AURA reward tokens:

Listing 4: scripts/deploySystem.ts

700 const vestingAddr = vestingGroup.recipients.map(m => m.

ë address);

701 const vestingAmounts = vestingGroup.recipients.map(m => m.

ë amount);

702 tx = await vestedEscrow.fund(vestingAddr , vestingAmounts);

Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

It is recommended reviewing the configuration data used to fund the

vesting recipients and, if necessary, correcting the values using the

vesting admin.

Remediation Plan:

RISK ACCEPTED: The Aura Finance team will correct this finding through

the governance.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) MISTAKENLY SENT ERC20
TOKENS CAN NOT RESCUED IN THE
CONTRACTS - INFORMATIONAL

Description:

The contracts are missing functions to sweep/rescue accidental ERC-20

transfers. Accidentally, sent ERC-20 tokens will be locked in the

contracts.

Recommendation:

Consider adding a function to sweep accidental ERC-20 transfers to the

contracts.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this finding and does

not plan to fix it in the future to keep the difference between Aura and

Convex as minimal as possible to aid in the manual reviews and minimize

the chance of introducing bugs.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) USING POSTFIX
OPERATORS IN LOOPS - INFORMATIONAL

Description:

In the loops below, postfix (e.g. i++) operators were used to increment

or decrement variable values. It is known that, in loops, using prefix

operators (e.g. ++i) costs less gas per iteration than using postfix

operators.

Code Location:

aura-contracts/AuraClaimZap.sol

- Line 134 for (uint256 i = 0; i < rewardContracts.length; i++){

- Line 138 for (uint256 i = 0; i < extraRewardContracts.length; i++){

- Line 142 for (uint256 i = 0; i < tokenRewardContracts.length; i++){

aura-contracts/AuraLocker.sol

- Line 176 for (uint256 i = 0; i < rewardTokensLength; i++){

- Line 332 for (uint256 i; i < rewardTokensLength; i++){

- Line 350 for (uint256 i; i < rewardTokensLength; i++){

- Line 450 for (uint256 i = nextUnlockIndex; i < length; i++){

- Line 466 nextUnlockIndex++;

- Line 537 i--;;

aura-contracts/AuraVestedEscrow.sol

- Line 105 for (uint256 i = 0; i < _recipient.length; i++){

aura-contracts/BalLiquidityProvider.sol

- Line 52 for (uint256 i = 0; i < 2; i++){

aura-contracts/ExtraRewardsDistributor.sol

- Line 242 for (uint256 i = epochIndex; i < tokenEpochs; i++){

convex-platform/ArbitartorVault.sol

- Line 49 for(uint256 i = 0; i < _toPids.length; i++){

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



convex-platform/BaseRewardPool.sol

- Line 218 for(uint i=0; i < extraRewards.length; i++){

- Line 234 for(uint i=0; i < extraRewards.length; i++){

- Line 266 for(uint i=0; i < extraRewards.length; i++){

- Line 300 for(uint i=0; i < extraRewards.length; i++){

convex-platform/Booster.sol

- Line 380 for(uint i=0; i < poolInfo.length; i++){

- Line 539 for(uint256 i = 0; i < _gauge.length; i++){

convex-platform/BoosterOwner.sol

- Line 144 for(uint256 i = 0; i < poolCount; i++){

convex-platform/ExtraRewardStashV3.sol

- Line 125 for(uint256 i = 0; i < maxRewards; i++){

- Line 201 for(uint i=0; i < tCount; i++){

convex-platform/PoolManagerSecondaryProxy.sol

- Line 69 for(uint i=0; i < usedList.length; i++){

It is also possible to further optimize loops by using unchecked loop

index incrementing and decrementing.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

For example, based on the following test contract:

Listing 5: GasTestIncrement.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.11;

3

4 contract GasTestIncrement {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 function uncheckedpreiincrement(uint256 iterations) public {

14 for (uint256 i = 0; i < iterations ;) {

15 unchecked { ++i; }

16 }

17 }

18 }

We can see the difference in gas costs:

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use unchecked ++i and --j operations instead of

i++ and j-- to increment or decrement the values of a uint variables

inside loops. This does not just apply to the iterator variables, but

the increments and decrements done inside the loops code blocks too.

It is noted that using unchecked operations requires particular caution

to avoid overflows.

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this finding and does

not plan to correct it in the future in order to keep the difference

between Aura and Convex as minimal as possible to aid in manual reviews

and minimize the chance of introducing bugs.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.5 (HAL-05) ARRAY.LENGTH USED IN
LOOP CONDITIONS - INFORMATIONAL

Description:

In the loops below, unnecessary reading of the lengths of arrays on each

iteration wastes gas.

Code Location:

aura-contracts/AuraClaimZap.sol

- Line 134 for (uint256 i = 0; i < rewardContracts.length; i++){

- Line 138 for (uint256 i = 0; i < extraRewardContracts.length; i++){

- Line 142 for (uint256 i = 0; i < tokenRewardContracts.length; i++){

aura-contracts/AuraVestedEscrow.sol

- Line 105 for (uint256 i = 0; i < _recipient.length; i++){

convex-platform/ArbitartorVault.sol

- Line 49 for(uint256 i = 0; i < _toPids.length; i++){

convex-platform/BaseRewardPool.sol

- Line 218 for(uint i=0; i < extraRewards.length; i++){

- Line 234 for(uint i=0; i < extraRewards.length; i++){

- Line 266 for(uint i=0; i < extraRewards.length; i++){

- Line 300 for(uint i=0; i < extraRewards.length; i++){

convex-platform/Booster.sol

- Line 380 for(uint i=0; i < poolInfo.length; i++){

- Line 539 for(uint256 i = 0; i < _gauge.length; i++){

convex-platform/PoolManagerSecondaryProxy.sol

- Line 69 for(uint i=0; i < usedList.length; i++){

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

For example, based on the following test contract:

Listing 6: GasTestLength.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.11;

3

4 contract GasTestLength {

5

6 uint256 [] private arr = [0,1,2,3,4,5,6,7,8,9];

7

8 function unoptimalized () public {

9 for (uint256 i = 0; i < arr.length; ++i) {

10 }

11

12 }

13 function optimalized () public {

14 uint256 length = arr.length;

15 for (uint256 i = 0; i < length; ++i) {

16 }

17 }

18 }

We can see the difference in gas costs:

Risk Level:

Likelihood - 1

Impact - 1

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to cache array lengths outside of loops as long the

size is not changed during the loop:

Listing 7

1 uint256 length = arr.length;

2 for (uint256 i = 0; i < length; ++i) {

3 ...

4 }

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this finding and does

not plan to correct it in the future in order to keep the difference

between Aura and Convex as minimal as possible to aid in manual reviews

and minimize the chance of introducing bugs.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.6 (HAL-06) USING != 0 CONSUMES
LESS GAS THAN > 0 IN UNSIGNED
INTEGER VALIDATION - INFORMATIONAL

Description:

In the require statements below, > 0 was used to validate if the unsigned

integer parameters are bigger than 0. It is known that, using != 0 costs

less gas than > 0.

Code Location:

aura-contracts/AuraBalRewardPool.sol

- Line 121 require(_amount > 0, "RewardPool : Cannot stake 0");

- Line 139 require(_amount > 0, "RewardPool : Cannot stake 0");

- Line 157 require(amount > 0, "RewardPool : Cannot withdraw 0");

- Line 232 require(rewardsAvailable > 0, "!balance");

aura-contracts/AuraLocker.sol

- Line 236 require(rewardData[_rewardsToken].lastUpdateTime > 0, ...

- Line 285 require(_amount > 0, "Cannot stake 0");

- Line 399 require(amt > 0, "Nothing locked");

- Line 425 require(length > 0, "no locks");

- Line 471 require(locked > 0, "no exp locks");

- Line 511 require(len > 0, "Nothing to delegate");

- Line 862 require(_rewards > 0, "No reward");

aura-contracts/AuraMerkleDrop.sol

- Line 139 require(_amount > 0, "!amount");

aura-contracts/AuraPenaltyForwarder.sol

- Line 55 require(bal > 0, "!empty");

aura-contracts/AuraVestedEscrow.sol

- Line 55 require(totalLocked[_recipient] > 0, "!funding");

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



aura-contracts/BalLiquidityProvider.sol

- Line 74 require(balAfter > 0, "!mint");

aura-contracts/ExtraRewardsDistributor.sol

- Line 104 require(_amount > 0, "!amount");

- Line 180 require(_index > 0 && ...);

aura-contracts/RewardPoolDepositWrapper.sol

- Line 51 ‘require(minted > 0, “!mint”);‘‘

convex-platform/BaseRewardPool.sol

- Line 215 require(_amount > 0, 'RewardPool : Cannot stake 0');

- Line 231 require(amount > 0, 'RewardPool : Cannot withdraw 0');

convex-platform/ConvexMasterChef.sol

- Line 138 require(totalAllocPoint > 0, "!alloc");

convex-platform/CrvDepositor.sol

- Line 169 require(_amount > 0,"!>0");

convex-platform/PoolManagerSecondaryProxy.sol

- Line 104 require(weight > 0, "must have weight");

convex-platform/interfaces/BoringMath.sol

- Line 20 require(b > 0, "BoringMath: division by zero");

- Line 102 require(b > 0, "BoringMath: division by zero");

- Line 123 require(b > 0, "BoringMath: division by zero");

- Line 143 require(b > 0, "BoringMath: division by zero");

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

For example, based on the following test contract:

Listing 8: GasTestRequire.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.11;

3

4 contract GasTestRequire {

5 function originalrequire(uint256 len) public {

6 require(len > 0, "Error!");

7 }

8 function optimalizedrequire(uint256 len) public {

9 require(len != 0, "Error!");

10 }

11 }

We can see the difference in gas costs:

Risk Level:

Likelihood - 1

Impact - 1

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to use != 0 instead of > 0 to validate unsigned integer

parameters. For example, use instead:

Listing 9

1 require(_amount != 0, "RewardPool : Cannot stake 0");

Remediation Plan:

ACKNOWLEDGED: The Aura Finance team acknowledged this finding and does

not plan to correct it in the future to keep the difference between Aura

and Convex as minimal as possible to aid in manual reviews and minimize

the chance of introducing bugs.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



30

AUTOMATED TESTING



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their ABI and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

Note that due to the significant number of contracts, the low-risk

findings displayed by Slither were not included in the report. However,

we examined them individually during our audit.

aura-contracts/AuraLocker.sol

31

AU
TO

MA
TE

D
TE

ST
IN

G



aura-contracts/AuraVestedEscrow.sol

aura-contracts/BalInvestor.sol

aura-contracts/CrvDepositorWrapper.sol

aura-contracts/RewardPoolDepositWrapper.sol

32

AU
TO

MA
TE

D
TE

ST
IN

G



convex-platform/BaseRewardPool.sol

convex-platform/BaseRewardPool4626.sol

convex-platform/Booster.sol

convex-platform/ConvexMasterChef.sol

33

AU
TO

MA
TE

D
TE

ST
IN

G



convex-platform/CrvDepositor.sol

convex-platform/ExtraRewardStashV3.sol

convex-platform/PoolManagerSecondaryProxy.sol

convex-platform/PoolManagerV3.sol

convex-platform/VoteProxy.sol

• No major issues were found by Slither.

• All the reentrancy vulnerabilities were checked individually, and

they are all false positives.

• The multiplications on the result of divisions are intentional or

have minimal impact.

• Unchecked transfers were correctly flagged by Sither, although it

makes no sense to check the return value in this case, as any failed

transfer would revert directly.

34

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

aura-contracts/AuraBalRewardPool.sol

aura-contracts/AuraMath.sol

35

AU
TO

MA
TE

D
TE

ST
IN

G



aura-contracts/AuraMerkleDrop.sol

aura-contracts/AuraStakingProxy.sol

aura-contracts/AuraVestedEscrow.sol

36

AU
TO

MA
TE

D
TE

ST
IN

G



aura-contracts/BalInvestor.sol

aura-contracts/RewardPoolDepositWrapper.sol

convex-platform/BaseRewardPool.sol

convex-platform/ConvexMasterChef.sol

37

AU
TO

MA
TE

D
TE

ST
IN

G



convex-platform/PoolManagerV3.sol

convex-platform/ProxyFactory.sol

convex-platform/VoterProxy.sol

• No major issues were found by MythX.

• The requirement violations and assert violations are all false

positives.

• Integer Overflows and Underflows flagged by MythX are false

positives.

• block.number is not used as a source of randomness in any of the

smart contracts.

• DoS with Failed Call was correctly flagged by MythX, although the

likelihood is minimal.

38

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



