
27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 1/68

Aura Finance contest

Findings & Analysis Report

2022-07-26

TABLE OF CONTENTS

Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (1)

[H-01] User can forfeit other user rewards

Medium Risk Findings (22)

[M-01] BaseRewardPool4626 is not IERC4626 compliant

[M-02] CrvDepositorWrapper.sol relies on oracle that isn’t frequently updated

[M-03] Improperly Skewed Governance Mechanism

[M-04] AuraLocker kick reward only takes last locked amount into consideration,

instead of whole balance

[M-05] Users can grief reward distribution

[M-06] Rewards distribution can be delayed/never distributed on
AuraLocker.sol#L848

[M-07] Reward may be locked forever if user doesn’t claim reward for a very long time
such that too many epochs have been passed

[M-08] Locking up AURA Token does not increase voting power of individual

[M-09] Reward can be vested even after endTime

[M-10] Increase voting power by tokenizing the address that locks the token

[M-11] Users may lose rewards to other users if rewards are given as fee-on-transfer
tokens

[M-12] User will lose funds

[M-13] ConvexMasterChef : When _lpToken is cvx, reward calculation is incorrect

[M-14] Integer overflow will lock all rewards in AuraLocker

[M-15] ConvexMasterChef : safeRewardTransfer can cause loss of funds

[M-16] DDOS in BalLiquidityProvider

[M-17] ConvexMasterChef ’s deposit and withdraw can be reentered drawing all

reward funds from the contract if reward token allows for transfer flow control

[M-18] AuraBalRewardPool charges a penalty to all users in the pool if the

AuraLocker has been shut down

[M-19] CrvDepositor.sol Wrong implementation of the 2-week buffer for lock

[M-20] massUpdatePools() is susceptible to DoS with block gas limit

Top

https://code4rena.com/

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 2/68

[M-21] ConvexMasterChef : When using add() and set() , it should always call

massUpdatePools() to update all pools

[M-22] Duplicate LP token could lead to incorrect reward distribution

Low Risk and Non-Critical Issues

Summary

L-01 Wrong amounts sent if arrays don’t match

L-02 Incorrect/misleading NatSpec

L-03 Function reverts if called a second time

L-04 pragma experimental ABIEncoderV2 is deprecated

L-05 safeApprove() is deprecated

L-06 Missing checks for address(0x0) when assigning values to address state

variables

N-01 Unused file

N-02 Call For / From variants instead of copying an pasting code

N-03 Remove tautological code

N-04 Adding a return statement when the function defines a named return

variable, is redundant

N-05 override function arguments that are unused should have the variable name

removed or commented out to avoid compiler warnings

N-06 public functions not called by the contract should be declared external

instead

N-07 type(uint<n>).max should be used instead of uint<n>(-1)

N-08 constant s should be defined rather than using magic numbers

N-09 Redundant cast

N-10 Numeric values having to do with time should use time units for readability

N-11 Missing event for critical parameter change

N-12 Use a more recent version of solidity

N-13 Use a more recent version of solidity

N-14 Use a more recent version of solidity

N-15 Constant redefined elsewhere

N-16 Inconsistent spacing in comments

N-17 Non-library/interface files should use fixed compiler versions, not floating ones

N-18 Typos

N-19 File is missing NatSpec

N-20 NatSpec is incomplete

N-21 Event is missing indexed fields

Gas Optimizations

Summary

G-01 Remove or replace unused state variables

G-02 Multiple address mappings can be combined into a single mapping of an

address to a struct , where appropriate

G-03 State variables only set in the constructor should be declared immutable

G-04 State variables can be packed into fewer storage slots

G-05 Using calldata instead of memory for read-only arguments in external

functions saves gas

G-06 State variables should be cached in stack variables rather than re-reading them
from storage

G-07 <x> += <y> costs more gas than <x> = <x> + <y> for state variables

G-08 internal functions only called once can be inlined to save gas

G-09 <array>.length should not be looked up in every loop of a for -loop

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 3/68

G-10 ++i / i++ should be unchecked{++i} / unchecked{i++} when it is not

possible for them to overflow, as is the case when used in for - and while -loops

G-11 require() / revert() strings longer than 32 bytes cost extra gas

G-12 keccak256() should only need to be called on a specific string literal once

G-13 Not using the named return variables when a function returns, wastes
deployment gas

G-14 Using bool s for storage incurs overhead

G-15 Use a more recent version of solidity

G-16 Using > 0 costs more gas than != 0 when used on a uint in a

require() statement

G-17 It costs more gas to initialize variables to zero than to let the default of zero be
applied

G-18 ++i costs less gas than i++ , especially when it’s used in for -loops (

--i / i-- too)

G-19 Splitting require() statements that use && saves gas

G-20 Usage of uints / ints smaller than 32 bytes (256 bits) incurs overhead

G-21 abi.encode() is less efficient than abi.encodePacked()

G-22 Using private rather than public for constants, saves gas

G-23 Don’t compare boolean expressions to boolean literals

G-24 Don’t use SafeMath once the solidity version is 0.8.0 or greater

G-25 Duplicated require() / revert() checks should be refactored to a modifier

or function

G-26 Multiplication/division by two should use bit shifting

G-27 Stack variable used as a cheaper cache for a state variable is only used once

G-28 require() or revert() statements that check input arguments should be

at the top of the function

G-29 Empty blocks should be removed or emit something

G-30 Use custom errors rather than revert() / require() strings to save

deployment gas

G-31 Functions guaranteed to revert when called by normal users can be marked
payable

G-32 public functions not called by the contract should be declared external

instead

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors, developers, and
individuals with domain expertise in smart contracts.

A C4 audit contest is an event in which community participants, referred to as Wardens, review,
audit, or analyze smart contract logic in exchange for a bounty provided by sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the Aura Finance
smart contract system written in Solidity. The audit contest took place between May 11—May 25
2022.

Overview

ABOUT C4

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 4/68

109 Wardens contributed reports to the Aura Finance contest:

1. csanuragjain

2. cccz

3. IllIllI

4. 0xjuicer

5. hyh

6. kirk-baird

7. catchup

8. QuantumBrief (pedroais, GermanKuber, and fatherOfBlocks)

9. WatchPug (jtp and ming)

10. kenzo

11. Chom

12. Kumpa

13. 0x52

14. 0xsomeone

15. xiaoming90

16. MaratCerby

17. BowTiedWardens (BowTiedHeron, BowTiedPickle, m4rio_eth, Dravee, and BowTiedFirefox)

18. Aits

19. reassor

20. TerrierLover

21. 0xkatana

22. SmartSek (0xDjango and hake)

23. defsec

24. robee

25. 0xNazgul

26. 0x4non

27. joestakey

28. c3phas

29. Hawkeye (0xwags and 0xmint)

30. Tomio

31. hansfriese

32. kenta

33. MiloTruck

34. CertoraInc (egjlmn1, OriDabush, ItayG, and shakedwinder)

35. sashik_eth

36. _Adam

37. fatherOfBlocks

38. 0x1f8b

39. Funen

40. 0xf15ers (remora and twojoy)

41. Kaiziron

42. delfin454000

43. simon135

WARDENS

https://twitter.com/csanuragjain
https://twitter.com/0xhyh
https://twitter.com/kirkthebaird
https://twitter.com/catchup22
https://twitter.com/Pedroais2/
https://twitter.com/father0fBl0cks
https://twitter.com/WatchPug_
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/KenzoAgada
https://chom.dev/
https://github.com/alex-ppg
https://twitter.com/MaratCerby
https://code4rena.com/reports/2022-05-aura/BowTiedETHernal
https://twitter.com/JustDravee
https://twitter.com/tamjid0x01
https://twitter.com/defsec_
https://twitter.com/0xNazgul
https://twitter.com/JoeStakey
https://twitter.com/c3ph_
https://twitter.com/meidhiwirara
https://twitter.com/hansfriese
https://milotruck.github.io/
https://twitter.com/CertoraInc
https://twitter.com/ori_dabush
https://twitter.com/father0fBl0cks
https://instagram.com/vanensurya

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 5/68

44. Waze

45. ellahi

46. mics

47. FSchmoede

48. bobirichman

49. cthulhu_cult (badbird and seanamani)

50. unforgiven

51. Ruhum

52. Tadashi

53. oyc_109

54. asutorufos

55. sach1r0

56. sikorico

57. NoamYakov

58. samruna

59. GimelSec (rayn and sces60107)

60. JC

61. Kthere

62. SooYa

63. z3s

64. jayjonah8

65. zmj

66. tintin

67. berndartmueller

68. cryptphi

69. Nethermind

70. PPrieditis

71. Rolezn

72. sorrynotsorry

73. BouSalman

74. p_crypt0

75. sseefried

76. 242

77. 0xNineDec

78. AlleyCat

79. ch13fd357r0y3r

80. JDeryl

81. hubble (ksk2345 and shri4net)

82. Cityscape

83. 0xKitsune

84. UnusualTurtle

85. rfa

86. 0v3rf10w

87. DavidGialdi

88. Fitraldys

https://twitter.com/ellahinator
https://twitter.com/b4db1rd
https://twitter.com/SeanEmile
https://twitter.com/0xruhum
https://github.com/htadashi
https://twitter.com/rayn731
https://twitter.com/sm4rtcontr4ct
https://github.com/z3s/
https://twitter.com/berndartmueller
https://nethermind.io/
https://twitter.com/BouSalman
http://seanseefried.org/blog
https://twitter.com/ch13fd357r0y3r
https://github.com/0xKitsune
https://www.instagram.com/riyan_rfa/
https://twitter.com/_0v3rf10w
https://twitter.com/fitraldys

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 6/68

89. Randyyy

90. antonttc

91. minhquanym

92. marcopaladin

93. orion

This contest was judged by LSDan.

Final report assembled by liveactionllama.

The C4 analysis yielded an aggregated total of 23 unique vulnerabilities. Of these vulnerabilities, 1
received a risk rating in the category of HIGH severity and 22 received a risk rating in the category of
MEDIUM severity.

Additionally, C4 analysis included 76 reports detailing issues with a risk rating of LOW severity or
non-critical. There were also 66 reports recommending gas optimizations.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Aura Finance contest repository, and is
composed of 44 smart contracts written in the Solidity programming language and includes 6,034
lines of Solidity code.

C4 assesses the severity of disclosed vulnerabilities according to a methodology based on OWASP
standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when conducting
assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the submission review
process, please refer to the documentation provided on the C4 website.

Summary

Scope

Severity Criteria

High Risk Findings (1)

[H-01] USER CAN FORFEIT OTHER USER REWARDS

https://twitter.com/randyyramadhan
https://github.com/antoncoding
https://twitter.com/Zcropakx
https://twitter.com/lsdan_defi
https://twitter.com/liveactionllama
https://github.com/code-423n4/2022-05-aura
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code4rena.com/
https://github.com/code-423n4/2022-05-aura-findings/issues/50

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 7/68

Submitted by csanuragjain

ExtraRewardsDistributor.sol#L127

User can forfeit other user rewards by giving a higher _startIndex in getReward function.

1. Assume User B has not received any reward yet so that his userClaims[_token][User B]=0

2. User A calls getReward function with _account as User B and _startIndex as 5

3. This eventually calls _allClaimableRewards at ExtraRewardsDistributor.sol#L213 which
computes epochIndex =5>0?5:0 = 5

4. Assuming tokenEpochs is 10 and latestEpoch is 8, so reward will computed from epoch 5 till
epoch index 7 and _allClaimableRewards will return index as 7

5. _getReward will simply update userClaims[_token][User B] with 7

6. This is incorrect because as per contract User B has received reward from epoch 0-7 even
though he only received reward for epoch 5-7

Do not allow users to call getReward function for other users.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and commented:

This is a valid report, however, considering it is only related to the distribution of reward
tokens, I have a hard time classifying this as high risk.

LSDan (judge) commented:

I agree with the high risk rating on this one. A third party could cause significant loss of
expected reward funds for users across the entire protocol if so inclined.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by 0xjuicer

BaseRewardPool4626.sol

BaseRewardPool4626 is not IERC4626 compliant.

This makes the BaseRewardPool4626 contract irrelevant as it is for now since projects won’t be able
to integrate with BaseRewardPool4626 using the eip-4626 standard.

You can choose to remove the BaseRewardPool4626 and save on some deployment gas or review
the necessary functions and emits required on eip-4626 and add it to BaseRewardPool4626.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and commented:

Proof of Concept

Recommended Mitigation Steps

Medium Risk Findings (22)

[M-01] BASEREWARDPOOL4626 IS NOT IERC4626 COMPLIANT

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/ExtraRewardsDistributor.sol#L127
https://github.com/code-423n4/2022-05-aura-findings/issues/50#issuecomment-1137553569
https://github.com/code-423n4/2022-05-aura-findings/issues/50#issuecomment-1160704916
https://github.com/code-423n4/2022-05-aura-findings/issues/50
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/convex-platform/blob/9cae5eb5a77e73bbc1378ef213740c1889e2e8a3/contracts/contracts/BaseRewardPool4626.sol
https://eips.ethereum.org/EIPS/eip-4626
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/code-423n4/2022-05-aura-findings/issues/26#issuecomment-1137484163
https://github.com/code-423n4/2022-05-aura-findings/issues/26

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 8/68

Valid report. Probably should be severity 1 though.. no funds are ever at risk under any
scenario.

LSDan (judge) commented:

I agree with medium risk here.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#5

Submitted by 0x52

CrvDepositorWrapper.sol#L56-L65

Unpredictable slippage, sandwich vulnerability or frequent failed transactions

CrvDepostiorWrapper uses the TWAP provided by the 20/80 WETH/BAL. The issue is that this pool
has only handled ~15 transactions per day in the last 30 days, which means that the oracle
frequently goes more than an hour without updating. Each time a state changing operation is called,
the following code in the balancer pool takes a snapshot of the pool state BEFORE any operation
changes it:

OracleWeightedPool.sol#L156-L161

This could result in the price of the oracle frequently not reflecting the true value of the assets due to
infrequency of update. Now also consider that the pool has a trading fee of 2%. Combine an
inaccurate oracle with a high fee pool and trades can exhibit high levels of “slippage”. To account for
this outputBps in AuraStakingProxy needs to be set relatively low or risks frequent failed
transactions when calling distribute due to slippage conditions not being met. The lower outputBps
is set the more vulnerable distribute becomes to sandwich attacks.

Consider using chainlink oracles for both BAL and ETH to a realtime estimate of the LP value. A
chainlink LP oracle implementation can be found here.

0xMaharishi (Aura Finance) confirmed and commented:

Valid finding and agree with the severity generally. Vector here is either function reverting
or potentially getting sandwiched.

To mitigate this currently, there is a keeper address added and the tx would be sent via

flashbots, however agree that other steps could be taken to allow it to operate more
fluidly.

0xMaharishi (Aura Finance) resolved and commented:

Resolution for now is to use the CrvDepositorWrapper price as a guideline and let the
keeper of AuraStakingProxy provide a minOut.

Submitted by 0xsomeone

[M-02] CRVDEPOSITORWRAPPER.SOL RELIES ON ORACLE THAT ISN’T
FREQUENTLY UPDATED

Proof of Concept

Recommended Mitigation Steps

[M-03] IMPROPERLY SKEWED GOVERNANCE MECHANISM

https://github.com/code-423n4/2022-05-aura-findings/issues/26#issuecomment-1160749004
https://github.com/code-423n4/2022-05-aura-findings/issues/26#event-6679177454
https://github.com/code-423n4/2022-05-aura/pull/5
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L56-L65
https://github.com/balancer-labs/balancer-v2-monorepo/blob/80e1a5db7439069e2cb53e228bce0a8a51f5b23e/pkg/pool-weighted/contracts/oracle/OracleWeightedPool.sol#L156-L161
https://blog.alphaventuredao.io/fair-lp-token-pricing/
https://github.com/code-423n4/2022-05-aura-findings/issues/115#issuecomment-1138380103
https://github.com/code-423n4/2022-05-aura-findings/issues/115#issuecomment-1141477104
https://github.com/code-423n4/2022-05-aura-findings/issues/115
https://github.com/code-423n4/2022-05-aura-findings/issues/232

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 9/68

AuraLocker.sol#L594-L609

AuraLocker.sol#L611-L618

AuraLocker.sol L594-L609, L611-L618 Governance Susceptibility

The balance checkpointing system exposed by the contract for governance purposes is flawed as it
does not maintain voting balances properly. In detail, the total supply of votes is tracked as the sum
of all locked balances, however, the total voting power of an individual only tracks delegated
balances. As a result, governance percentage thresholds will be significantly affected and potentially
unmet.

The governance module may be unusable due to the significant discrepancy between “circulating”
voting power supply and the actual voting power of each individual summed up.

We advise the total voting supply to properly track the delegated balances only as otherwise, any
system relying on proportionate checkpointed balances will fail to function properly.

Issue is deducible by inspecting the relevant lines referenced in the issue and making note of the
calculations within the getPastVotes individual voting power function as well as the
getPastTotalSupply cumulative voting power function.

0xMaharishi (Aura Finance) disputed and commented:

This is intended behaviour. There is no incentive for users not to delegate their votes. And
even if there were, not delegating is the equivalent to having voting power but not voting.
Therefore this is not a relevant issue.

LSDan (judge) decreased severity to Medium and commented:

I’m going to leave this one in play and downgrade the severity. The warden’s report is
accurate; however, if the required percentages of voting cannot be met, the DAO would
simply have to go on a campaign to get people to delegate their votes. This would be
annoying but not critically destructive. That said, medium severity makes sense because a
bad actor could potentially gather voting power and intentionally disrupt things by not
delegating it. I’d recommend implementing the fix suggested by the warden.

Submitted by kenzo

The issue occurs in AuraLocker, when expired locks are processed via kicking, and if all the user
locks have expired.

In this scenario, to calculate the kick reward, _processExpiredLocks multiplies the last locked

amount by the number of epochs between the last lock’s unlock time and the current epoch.

A comment in this section mentions
"wont have the exact reward rate that you would get if looped through" . However, there’s no

reason not to multiply user’s whole locked balance by the number of epochs since the last lock’s
unlock time, instead of only the last locked amount.

While this will still not be as accurate as looping through, this will give a more accurate kick reward

File Lines Type

Description

Impact

Solution (Recommended Mitigation Steps)

Proof of Concept

[M-04] AURALOCKER KICK REWARD ONLY TAKES LAST LOCKED AMOUNT
INTO CONSIDERATION, INSTEAD OF WHOLE BALANCE

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L594-L609
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L611-L618
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L594-L609
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L611-L618
https://github.com/code-423n4/2022-05-aura-findings/issues/232#issuecomment-1139705938
https://github.com/code-423n4/2022-05-aura-findings/issues/232#issuecomment-1160551188
https://github.com/code-423n4/2022-05-aura-findings/issues/156

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 10/68

result, which is still bounded by the full amount that would have been calculated if we had looped
through.

The reward calculation is inaccurate and lacking for no reason.

Kickers receive less rewards than they should.

Giving them a bigger, more accurate reward, will incentivize them better.

This is the section that calculates the kick reward if all locks have expired:

This flow is for low gas processing, so the function is not looping through all the locks (unlike the
flow where some locks have not expired yet).

In this flow, the function is just calculating the reward for the last lock.

Instead of doing this, it can multiply the total amount locked by the user (locked , already saved) by

the number of epochs between the last unlock time and current epoch.

The reward will still be smaller than if we had looped through all the rewards (since then each lock
amount would be multiplied by more than just the last lock’s number of expired epochs).

But it would be more accurate and give better incentive for kicking.

Change the last line in the code above to:

This will keep the low gas consumption of this flow, while giving a more accurate result.

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and commented:

Valid, but unsure if it should be classified as medium risk. Probably 1.

LSDan (judge) commented:

I’m going to leave this one as medium because there is unnecessary fund loss over time.
Good suggestions.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Impact

Proof of Concept

 //check for kick reward
 //this wont have the exact reward rate that you would get if looped through
 //but this section is supposed to be for quick and easy low gas processing o
 //we'll assume that if the reward was good enough someone would have process
 if (_checkDelay > 0) {
 uint256 currentEpoch = block.timestamp.sub(_checkDelay).div(rewardsDurat
 uint256 epochsover = currentEpoch.sub(uint256(locks[length - 1].unlockTi
 uint256 rRate = AuraMath.min(kickRewardPerEpoch.mul(epochsover + 1), den
 reward = uint256(locks[length - 1].amount).mul(rRate).div(denominator);
 }

Recommended Mitigation Steps

 reward = uint256(locked).mul(rRate).div(denominator);

[M-05] USERS CAN GRIEF REWARD DISTRIBUTION

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraLocker.sol#L396:#L405
https://github.com/code-423n4/2022-05-aura-findings/issues/156#issuecomment-1138650007
https://github.com/code-423n4/2022-05-aura-findings/issues/156#issuecomment-1166064301
https://github.com/code-423n4/2022-05-aura-findings/issues/156
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/180

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 11/68

Submitted by IllIllI

Users can grief reward distributions by spending dust.

If a reward is targeted for an epoch in the past, a user can front-run the txn in the mempool and call
addRewardToEpoch() with a dust amount at an epoch after the one in question. This will cause the

transaction in the mempool to revert

ExtraRewardsDistributor.sol#L74

Allow the backdating of rewards, which will cost more gas

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Fair finding; however, this is a peripheral contract and only affects user reward claiming. In
the Aura system, rewards are only added to the current epoch so should be fine.

0xMaharishi (Aura Finance) resolved:

All code4rena fixes code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by 0xjuicer, also found by csanuragjain

Rewards distribution can be delayed/never distributed on AuraLocker.sol#L848

Someone malicious can delay the rewards distribution for non cvxCrv tokens distributed on
AuraLocker.sol.

1: Attacker will send one wei of token that are distributed on the AuraLocker.sol to
AuraStakingProxy.

2: Attacker will call distributeOther.

The function will call notifyRewardAmount that calls _notifyReward

When calling _notifyReward the rewards left to distribute over the 7 days are redistributed
throughout a new period starting immediately.

Example: If the reward rate is 1 token (10**18) per second and 3.5 days are left (302400 seconds),
we get a leftover of 302400 tokens. this is then divided by 604800, the reward rate is now 0.5 and

Proof of Concept

File: contracts/ExtraRewardsDistributor.sol #1

74 require(len == 0 || rewardEpochs[_token][len - 1] < _epoch, "Cannot bac

Recommended Mitigation Steps

[M-06] REWARDS DISTRIBUTION CAN BE DELAYED/NEVER
DISTRIBUTED ON AURALOCKER.SOL#L848

Issue

uint256 remaining = uint256(rdata.periodFinish).sub(block.timestamp);
uint256 leftover = remaining.mul(rdata.rewardRate);
rdata.rewardRate = _reward.add(leftover).div(rewardsDuration).to96();

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L74
https://github.com/code-423n4/2022-05-aura-findings/issues/180#issuecomment-1139658412
https://github.com/code-423n4/2022-05-aura-findings/issues/180
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L848
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol
https://github.com/aurafinance/aura-contracts-lite/blob/6d60fca6f821dca1854a538807e7928ee582553a/contracts/AuraStakingProxy.sol
https://github.com/aurafinance/aura-contracts-lite/blob/6d60fca6f821dca1854a538807e7928ee582553a/contracts/AuraStakingProxy.sol#L203
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L860
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L860
https://github.com/code-423n4/2022-05-aura-findings/issues/1

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 12/68

the user of the protocol will have to wait one week for tokens that were supposed to be distributed
over 3.5 days. This can be repeated again and again so that some rewards are never distributed.

I can see that queueNewRewards has some protective mechanism. A new period is started only if
the token that is added on top of the already distributed tokens during the duration is over 120%.

I suggest adding a similar check to queueNewRewards

0xMaharishi (Aura Finance) confirmed, but disagreed with severity

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

code-423n4/2022-05-aura#6

Submitted by Chom

ExtraRewardsDistributor.sol#L233-L240

AuraLocker.sol#L334-L337

Reward may be locked forever if user doesn’t claim reward for a very long time such that too many
epochs have been passed. The platform then forced to reimburse reward to the user that got their
reward locked. Causing huge economics loss.

Can be done by reverse engineering from the affected code

From this line you will see a loop from epochIndex to tokenEpochs which loop tokenEpochs -
epochIndex times.

If tokenEpochs - epochIndex value goes high, it will consume too much gas which go beyond the
limit of the chain and cause the transaction to be always failed. As a result, reward may be locked
forever.

Recommended Mitigation Steps

[M-07] REWARD MAY BE LOCKED FOREVER IF USER DOESN’T CLAIM
REWARD FOR A VERY LONG TIME SUCH THAT TOO MANY EPOCHS HAVE
BEEN PASSED

Proof of Concept

 for (uint256 i = epochIndex; i < tokenEpochs; i++) {
 //only claimable after rewards are "locked in"
 if (rewardEpochs[_token][i] < latestEpoch) {
 claimableTokens += _claimableRewards(_account, _token, rewardEpochs[_tok
 //return index user claims should be set to
 epochIndex = i + 1;
 }
 }

 uint256 latestEpoch = auraLocker.epochCount() - 1;
 // e.g. tokenEpochs = 31, 21
 uint256 tokenEpochs = rewardEpochs[_token].length;

 // e.g. epochIndex = 0
 uint256 epochIndex = userClaims[_token][_account];
 // e.g. epochIndex = 27 > 0 ? 27 : 0 = 27
 epochIndex = _startIndex > epochIndex ? _startIndex : epochIndex;

https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L820
https://github.com/aurafinance/aura-contracts-lite/blob/main/contracts/AuraLocker.sol#L820
https://github.com/code-423n4/2022-05-aura-findings/issues/1
https://github.com/code-423n4/2022-05-aura-findings/issues/1#issuecomment-1141475659
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233-L240
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L334-L337
https://github.com/code-423n4/2022-05-aura-findings/issues/240

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 13/68

epochIndex is the maximum of _startIndex and latest index of rewardEpochs that user has
claim the reward

tokenEpochs is the number of epochs that has reward, can be added through
addRewardToEpoch function up to latest epoch count of auraLocker

latestEpoch is epoch count of auraLocker

If you specified too high _startIndex, the reward may be skipped and these skipped reward are lost
forever as the _getReward function set latest epoch that user has claim to the lastest index of
rewardEpochs that can be claimed.

the aura locker epoch can be added by using checkpointEpoch function which will automatically
add epochs up to current timestamp. Imagine today is 100 years from latest checkpoint and
rewardsDuration is 1 day, the total of around 36500 epochs needed to be pushed into the array in
single transaction which always failed due to gasLimit. The code that responsible for pushing new
epochs below (in AuraLocker file)

Even if these line are passed because the nature that checkpointEpoch is likely to be called daily and
reward are added daily. if user doesn’t claim the reward for 100 years,
rewardEpochs[_token].length = 36500 where epochIndex = 0. Which cause an impossible loop

that run 36500 times

. In this case this transaction will always be failed due to gas limit. In the worst case, If this problem
cause staking fund to be frozen, the only way is to trash the reward and use emergencyWithdraw to

withdraw staked fund.

From above statement, we can proof that there exists a case that user reward may be locked forever
due to looping too many times causing gas to be used beyond the limit thus transaction always
failed.

Reverse engineering using the help of IDE.

User should be able to supply endEpochIndex to the claim reward functions. And only calculate
reward from startIndex to min(auraLocker.epochCount() - 1, endEpochIndex). And also add support
for partial reward claiming.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Valid report although given these are reward tokens and the max amount of entries is one
per week, it would take some years for this to run over gas limit, during which time the
contract could easily be changed.

LSDan (judge) decreased severity to Medium and commented:

I’m downgrading this to medium severity. It is unreasonable to expect contracts to be
future proof to the tune of a hundred years or more, but if the frequency had been
unreasonably fast this issue could have kicked in.

0xMaharishi (Aura Finance) resolved and commented:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

 while (epochs[epochs.length - 1].date != currentEpoch) {
 uint256 nextEpochDate = uint256(epochs[epochs.length - 1].date).add(rewa
 epochs.push(Epoch({ supply: 0, date: uint32(nextEpochDate) }));
 }

Tools Used

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1139746911
https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1160632546
https://github.com/code-423n4/2022-05-aura-findings/issues/240#issuecomment-1141476132
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 14/68

Submitted by xiaoming90

Per the documentation, AURA tokens can be locked in the AuraLocker to recieve vlAURA. vlAURA is
voting power in the AURA ecosystem.

It is also possible for the users to delegate their voting power to a specific address by calling the
AuraLocker.delegate(address account) function.

However, after users locked up their AURA tokens in exchange for vlAURA tokens, their voting power
did not increase.

The following shows an example of Alice attempting to get some voting power by locking up her
AURA tokens, but her voting power did not increase:

1. At this point, Alice has not locked any AURA token into the AuraLocker yet. Thus, when
AuraLocker.getVotes(Alice.address) is called, it returned “0” (No voting power. This is

expected).

2. Alice decided to get some voting power. So, Alice locked 100 AURA tokens by calling the
AuraLocker._lock() function, and gain 100 vlAURA in return.

3. Alice understand that as per the design, voting power will be 0 after depositing until the next
epoch. So, she waited for around 1 week.

4. After a week has passed, the AuraLocker.getVotes(Alice.address) is called again. Alice
expected it to return”100”, but it still returned “0” (Still no voting power).

5. Alice has locked up her AURA tokens for a week and hold 100 vlAURA, yet she has no voting
power.

The following snippet of test script demonstrates the above issue, showing that the vote power
remains the same after locking up the AURA tokens for a week.

[M-08] LOCKING UP AURA TOKEN DOES NOT INCREASE VOTING
POWER OF INDIVIDUAL

Proof of Concept

it("(Debug) allows users to lock aura", async () => {
 const cvxBalance = await phase4.cvx.balanceOf(stakerAddress);
 const lockBefore = await phase4.cvxLocker.lockedBalances(stakerAddress);
 console.log("(Debug) User Locked Balance Record = Total %s CVX (Unlockable = %s CVX,

 console.log("(Debug) User is going to lock %s CVX", cvxBalance)
 await phase4.cvx.connect(staker.signer).approve(phase4.cvxLocker.address, cvxBalance
 await phase4.cvxLocker.connect(staker.signer).lock(stakerAddress, cvxBalance);

 const lockAfter = await phase4.cvxLocker.lockedBalances(stakerAddress);
 console.log("(Debug) User Locked Balance Record = Total %s CVX (Unlockable = %s CVX,

 expect(lockAfter.locked.sub(lockBefore.locked)).eq(cvxBalance);
});
it("(Debug) check user has votes after locking", async () => {
 const votesBefore = await phase4.cvxLocker.getVotes(stakerAddress);
 const lock = await phase4.cvxLocker.lockedBalances(stakerAddress);
 console.log("(Debug) votesBefore = %s, locked CVX = %s", votesBefore, lock.locked);
 console.log("(Debug) Properly locked tokens as of the most recent eligible epoch = %

 await increaseTime(ONE_WEEK);
 console.log("After 1 week")

 const votesAfter = await phase4.cvxLocker.getVotes(stakerAddress);
 console.log("(Debug) votesAfter = %s, locked CVX = %s", votesBefore, lock.locked);
 console.log("(Debug) Properly locked tokens as of the most recent eligible epoch = %

 expect(votesAfter.sub(votesBefore)).eq(lock.locked);

});
it("(Debug) check user lock balance and votes after 20 weeks", async () => {
 const TWENTY_WEEKS = BN.from(60 * 60 * 24 * 7 * 20);
 await increaseTime(TWENTY_WEEKS);
 console.log("(Debug) After 20 weeks")

t l kAft 20 it h 4 L k l k dB l (t k Add)

https://github.com/code-423n4/2022-05-aura#auralocker
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258
https://github.com/code-423n4/2022-05-aura-findings/issues/186

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 15/68

Following is the output of the test script.

1. The first section shows that user has 800563688188805506352 vlAURA after locking up their
AURA tokens

2. The second section shows that after a week, the user has 0 voting power even though the user
has 800557536376417310407 vlAURA tokens. Note that these vlAURA tokens are all properly

locked tokens that have not been expired.

(Note: vlAURA == vlCVX and AURA == CVX in this context)

Aura Finance has implemented a checkpointing mechanism for determine user’s voting power.
Therefore, accounting for the votes will only happen during checkpoint when
AuraLocker.checkpointDelegate() function is being
called. Therefore, the
AuraLocker.getVotes() function will only consider the locked AURA tokens that have been

“checkpointed” as votes. In other words, if the locked AURA tokens have not been “checkpointed”
yet, it will simply remain as a balance in the AuraLocker contract, and the user’s locked AURA tokens
effectively have no voting power.

Based on the source code, the root cause of this issue is that if a user does not have a delegatee,
the system will not perform any checkpointing, and user’s locked AURA token will not be accounted
as voting power.

Following code from AuraLocker._lock() shows that checkpointing will only be performed if the
user has a delegatee. Otherwise, no checkpointing will be performed when users locked their AURA
tokens.

 const lockAfter20 = await phase4.cvxLocker.lockedBalances(stakerAddress);
 console.log("(Debug) User Locked Balance = Total %s CVX (Unlockable = %s CVX, Locked
 console.log("(Debug) Properly locked tokens as of the most recent eligible epoch = %

 expect(lockAfter20.unlockable).eq(lockAfter20.total); // all locks should have expir
});

 aura locker
(Debug) User Locked Balance Record = Total 0 CVX (Unlockable = 0 CVX, Locked = 0 CVX)
(Debug) User is going to lock 800563688188805506352 CVX
(Debug) User Locked Balance Record = Total 800563688188805506352 CVX (Unlockable = 0 CVX
 ✓ (Debug) allows users to lock aura

(Debug) votesBefore = 0, locked CVX = 800563688188805506352
(Debug) Properly locked tokens as of the most recent eligible epoch = 0
After 1 week
(Debug) votesAfter = 0, locked CVX = 800563688188805506352
(Debug) Properly locked tokens as of the most recent eligible epoch = 800563688188805506
 1) (Debug) check user has votes after locking

(Debug) After 20 weeks
(Debug) User Locked Balance = Total 800563688188805506352 CVX (Unlockable = 800563688188
(Debug) Properly locked tokens as of the most recent eligible epoch = 0
 ✓ (Debug) check user lock balance and votes after 20 weeks

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 }
 // @audit - No checkpointing performed for the rest of the code in this function

 ..SNIP..
}

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L511
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L576
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 16/68

The only way for Alice could get back her voting power is to delegate to herself after locking her
AURA tokens. This is a workaround. AuraLocker.delegate() sole purpose should only serve to

delegate one’s voting power to another user, and should not be used as a workaround to force the
system to perform checkpointing to gain voting power.

For Alice to get back her voting power, she must call the AuraLocker.delegate(Alice.address)

function, which will delegate to herself. This function will in turn call the
AuraLocker._checkpointDelegate() function, which will “checkpointed” Alice’s locked tokens to

become votes. Only after this step, Alice’s voting power will be updated and calling
AuraLocker.getVotes(Alice.address) should return “100” now.

Additionally, documentation did not mention that a user is required to delegate to oneself in order to
get the voting power. Thus, it is very likely that majority of the users would not know how to get their
voting power unless they review the source code or is aware of this workaround.

The impact of this issue is that users might miss the opportunity to vote on critical protocol
decisions or flow of incentives (Gauge voting) due to lack of voting power as voting power is not
assigned to them after locking up AURA tokens.

If the users only realised this issue in the current epoch, they would miss the chance to vote in
current epoch. This is because by calling the AuraLocker.delegate(address account) function to
fix the issue, the votes will only be effective in the next epoch.

The outcome of the governance or gauge voting might be impacted and might not reflect the true
consensus of the community as affected users are not able to participate in the vote or have
inaccurate voting power, thus affecting the protocol.

In Convex Finance, users lock their CVX tokens by calling CvxLocker._lock() function and voting

power will be allocated to the users immediately. Similar strategy should be adopted.

It is recommended to update the AuraLocker._lock() function so that the user’s locked AURA
tokens are “checkpointed” and converted to voting power immediately after locking up if a user has
not assigned a delegatee yet. This will trigger the accounting for votes and translate the newly
locked tokens into voting power immediately.

Original Code

Suggested Modification

Impact

Recommended Mitigation Steps

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 }
 ..SNIP..
}

function _lock(address _account, uint256 _amount) internal {
 ..SNIP..
 address delegatee = delegates(_account);
 if (delegatee != address(0)) {
 delegateeUnlocks[delegatee][unlockTime] += lockAmount;
 _checkpointDelegate(delegatee, lockAmount, 0);
 } else {
 // If there is no delegatee,
 // then automatically delegate to the account to trigger the checkpointing
 delegateeUnlocks[_account][unlockTime] += lockAmount;
 _checkpointDelegate(_account, lockAmount, 0);

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 17/68

0xMaharishi (Aura Finance) disputed and commented:

Users must simply delegate to themselves to receive voting power

LSDan (judge) commented:

Valid issue. Fix the documentation or the code. If all users need to do is delegate to
themselves, then auto-delegating newly minted votes to the user would solve the issue.

Submitted by csanuragjain

AuraVestedEscrow.sol#L96

Reward vesting should end once endTime is reached, this is not done currently.

1. Observe the fund function

2. Observe that there is no check to disallow funding once endTime has been reached

Add below check

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

This report is kind of invalid, because there would be no utility in this.. it’s specifically left
open ended. With that being said, adding a check to ensure that funding is made BEFORE
START TIME would be good.

This should be a 0 or 1 at most.

LSDan (judge) commented:

As far as I can tell, this is totally valid. Funding in this state would cause a loss of funds in
that they would never go towards a reward.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by Kumpa

AuraLocker.sol#L258-L295

 }
 ..SNIP..
}

[M-09] REWARD CAN BE VESTED EVEN AFTER ENDTIME

Proof of Concept

Recommended Mitigation Steps

require(block.timestamp<=endTime, "Reward vesting period over");

[M-10] INCREASE VOTING POWER BY TOKENIZING THE ADDRESS
THAT LOCKS THE TOKEN

https://github.com/code-423n4/2022-05-aura-findings/issues/186#issuecomment-1139664883
https://github.com/code-423n4/2022-05-aura-findings/issues/186#issuecomment-1160556717
https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraVestedEscrow.sol#L96
https://github.com/code-423n4/2022-05-aura-findings/issues/126#issuecomment-1138397223
https://github.com/code-423n4/2022-05-aura-findings/issues/126#issuecomment-1164775429
https://github.com/code-423n4/2022-05-aura-findings/issues/126
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258-L295
https://github.com/code-423n4/2022-05-aura-findings/issues/126
https://github.com/code-423n4/2022-05-aura-findings/issues/278

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 18/68

Without restriction on the type of address that lock the token, a bad actor could lock the token

through the smart contract. Doing so enable him to make the lockedToken becomes liquidate by
tokenize his smart contract which defeat the purpose of the lockedToken that is supposed to be
untransferable. Moreover, a bad actor could attract people to lock the token through his smart
contract instead of directly locking with AuraLocker by injecting better short-term incentives to his
wrapper token. This enable the bad actor to accumulate voting power that could dictate the future of
the protocol.

A bad actor creates a smart contract

A contract calls lock in AuraLocker and locks the token

A bad actor tokenizes the contract

A bad actor attracts people to lock the token through his smart contract by offering a wrapper
tokens or additional incentives like high apy etc.

A bad actor dictates the smart contract to delegate its vote to his preferred address.

It would be best to check whether the locker is the smart contract or the wallet and, if the protocol
wants the smart contract to be the locker, it can implement the whitelist or blacklist.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Given no user funds are at risk I don’t think this is a super high risk, but I do agree that
there is a governance risk there and it’s something to be concerned about if/when there is
no multisig intermediary between aura voters and execution. With that being said, I think a
good solution would be to have a blacklist that the owner can set to block non-eoa’s from
making any further locks: bool canLock = isEOA(address) || !isBlacklisted(address)

LSDan (judge) decreased severity to Medium and commented:

I’ll leave this in place as a medium risk because there are external factors involved. High
risk is too severe.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by IllIllI, also found by Aits, BowTiedWardens, and MaratCerby

If rewards are given in fee-on-transfer tokens, users may get no rewards, breaking functionality.

Med: Assets not at direct risk, but the function of the protocol or its availability could
be impacted, or :::leak value with a hypothetical attack path with stated assumptions:::,

but external requirements.

(emphasis mine)

The underlying BAL protocol support fee-on-transfer tokens, so should Aura.

Proof of Concept

Recommended Mitigation Steps

[M-11] USERS MAY LOSE REWARDS TO OTHER USERS IF REWARDS
ARE GIVEN AS FEE-ON-TRANSFER TOKENS

Proof of Concept

File: contracts/ExtraRewardsDistributor.sol #1

87 function _addReward(
88 address _token,

https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1140251216
https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1160643488
https://github.com/code-423n4/2022-05-aura-findings/issues/278#issuecomment-1141475162
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura-findings/issues/176

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 19/68

ExtraRewardsDistributor.sol#L87-L98

If a fee is charged the total amount available to be transferred later will be less than the _amount

passed in.

Consider the following scenario:

User A holds 98% of the total supply of vlBAL (the system is being bootstrapped)

User B holds 1%

User C holds 1%

1. _token is given out as a reward. It is a fee-on-transfer token with a fee of 2%

2. Nobody claims the reward until it’s fully available (to save gas on transaction fees)

3. User A is the first to claim his/her reward and gets 98% of the reward, leaving 0 wei of the token
left (since the other 2% was already taken as a fee by the token itself)

4. User B tries to claim and the call reverts since there’s no balance left

5. User C tries to claim and the call reverts for them too

6. Users B and C are angry and stop using Aura

ExtraRewardsDistributor.sol#L87-L98

Measure the contract balance before and after the transfer, and use the difference as the amount,
rather than the stated amount.

0xMaharishi (Aura Finance) disputed and commented:

This contract is optional to use - it is not supposed to support fee bearing tokens.

LSDan (judge) commented:

See my comment on issue #18: “There are several cases in the code reported where the
token in question comes from an external (non-admin, non-protocol) source. One of these
is the addReward functionality (ExtraRewards). This would indeed cause an accounting
issue and allow a potential malicious actor to send rewards which cause distribution to
fail due to lack of funds. Just because you don’t plan to use fee on transfer tokens, does
not mean they will not be used. This should be protected against in the scenarios where it
could cause an issue.

89 uint256 _amount,
90 uint256 _epoch
91) internal nonReentrant {
92 // Pull before reward accrual
93 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
94
95 //convert to reward per token
96 uint256 supply = auraLocker.totalSupplyAtEpoch(_epoch);
97 uint256 rPerT = (_amount * 1e20) / supply;
98 rewardData[_token][_epoch] += rPerT;

File: contracts/ExtraRewardsDistributor.sol #2

87 function _addReward(
88 address _token,
89 uint256 _amount,
90 uint256 _epoch
91) internal nonReentrant {
92 // Pull before reward accrual
93 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
94
95 //convert to reward per token
96 uint256 supply = auraLocker.totalSupplyAtEpoch(_epoch);
97 uint256 rPerT = (_amount * 1e20) / supply;
98 rewardData[_token][_epoch] += rPerT;

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L87-L98
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L87-L98
https://github.com/code-423n4/2022-05-aura-findings/issues/176#issuecomment-1138718030
https://github.com/code-423n4/2022-05-aura-findings/issues/176#issuecomment-1179232751
https://github.com/code-423n4/2022-05-aura-findings/issues/18

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 20/68

That said, this clearly requires external factors and relies on hypothetical attack
motivation that seems unlikely to me. I think it should be included as a medium risk.”

Submitted by csanuragjain, also found by hyh and kirk-baird

AuraClaimZap.sol#L224-L226

It was observed that User will lose funds due to missing else condition.

1. User call claimRewards at ClaimZap.sol#L103 with Options.LockCvx as false

2. claimRewards internally calls _claimExtras

3. Everything goes good until AuraClaimZap.sol#L218

4. Since user cvxBalance>0 so cvxBalance is transferred from user to the contract.

5. Now since Options.LockCvx was set to false in options so if (_checkOption(options,
uint256(Options.LockCvx))) does not evaluate to true and does not execute

6. This means User cvx funds are stuck in contract

The condition should check if user has enabled lock for cvx, otherwise cvx should not be transferred
from user

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and commented:

This is valid, although it:

relies on user function input

does not affect user deposits

requires pre-approval of tokens

[M-12] USER WILL LOSE FUNDS

Proof of Concept

if (depositCvxMaxAmount > 0) {
 uint256 cvxBalance = IERC20(cvx).balanceOf(msg.sender).sub(removeCvxBalance)
 cvxBalance = AuraMath.min(cvxBalance, depositCvxMaxAmount);
 if (cvxBalance > 0) {

 //pull cvx
 IERC20(cvx).safeTransferFrom(msg.sender, address(this), cvxBalance);
 if (_checkOption(options, uint256(Options.LockCvx))) {
 IAuraLocker(locker).lock(msg.sender, cvxBalance);
 }
 }
 }

Recommended Mitigation Steps

if (depositCvxMaxAmount > 0 && _checkOption(options, uint256(Options.LockCvx))) {
 uint256 cvxBalance = IERC20(cvx).balanceOf(msg.sender).sub(removeCvxBalance);
 cvxBalance = AuraMath.min(cvxBalance, depositCvxMaxAmount);
 if (cvxBalance > 0) {
 //pull cvx
 IERC20(cvx).safeTransferFrom(msg.sender, address(this), cvxBalance);

 IAuraLocker(locker).lock(msg.sender, cvxBalance);
 }
 }

https://github.com/code-423n4/2022-05-aura/blob/main/contracts/AuraClaimZap.sol#L224-L226
https://github.com/code-423n4/2022-05-aura-findings/issues/108#issuecomment-1137625568
https://github.com/code-423n4/2022-05-aura-findings/issues/108

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 21/68

Therefore, I don’t think this should be a 3 severity. 2 at most.

LSDan (judge) decreased severity to Medium and commented:

This is a tough one, but I agree that medium severity makes more sense here since we’re
talking about a user acting on their own behalf in a very specific way. This does not open
up an attack vector which would allow a malicious actor to lock a user’s funds.

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by cccz

In the ConvexMasterChef contract, a new staking pool can be added using the add() function. The
staking token for the new pool is defined using the _lpToken variable. However, there is no additional
checking whether the _lpToken is the same as the reward token (cvx) or not.

When the _lpToken is the same token as cvx, reward calculation for that pool in the updatePool()
function can be incorrect. This is because the current balance of the _lpToken in the contract is used
in the calculation of the reward. Since the _lpToken is the same token as the reward, the reward
minted to the contract will inflate the value of lpSupply, causing the reward of that pool to be less
than what it should be.

[M-13] CONVEXMASTERCHEF: WHEN _LPTOKEN IS CVX, REWARD
CALCULATION IS INCORRECT

 function add(
 uint256 _allocPoint,
 IERC20 _lpToken,
 IRewarder _rewarder,
 bool _withUpdate
) public onlyOwner {
 if (_withUpdate) {
 massUpdatePools();
 }
 uint256 lastRewardBlock = block.number > startBlock
 ? block.number
 : startBlock;
 totalAllocPoint = totalAllocPoint.add(_allocPoint);
 poolInfo.push(
 PoolInfo({
 lpToken: _lpToken,
 allocPoint: _allocPoint,
 lastRewardBlock: lastRewardBlock,
 accCvxPerShare: 0,
 rewarder: _rewarder
 })
);
 }

 function updatePool(uint256 _pid) public {
 PoolInfo storage pool = poolInfo[_pid];
 if (block.number <= pool.lastRewardBlock) {
 return;
 }
 uint256 lpSupply = pool.lpToken.balanceOf(address(this));
 if (lpSupply == 0) {
 pool.lastRewardBlock = block.number;
 return;
 }
 uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
 uint256 cvxReward = multiplier
 .mul(rewardPerBlock)
 .mul(pool.allocPoint)
 .div(totalAllocPoint);

https://github.com/code-423n4/2022-05-aura-findings/issues/108#issuecomment-1160694547
https://github.com/code-423n4/2022-05-aura-findings/issues/108
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/151

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 22/68

ConvexMasterChef.sol#L96-L118

ConvexMasterChef.sol#L186-L206

Add a check that _lpToken is not cvx in the add function or mint the reward token to another contract
to prevent the amount of the staked token from being mixed up with the reward token.

0xMaharishi (Aura Finance) commented:

Could potentially require not to be the reward token, but I think this is just a relevant part of
dao ownership.

0xMaharishi (Aura Finance) confirmed and resolved

Submitted by kirk-baird

AuraLocker.sol#L176-L177

AuraLocker.sol#L802-L814

AuraLocker.sol#L864

There is a potential overflow in the rewards calculations which would lead to updateReward()

always reverting.

The impact of this overflow is that all reward tokens will be permanently locked in the contract.
User’s will be unable to call any of the functions which have the updateReward() modifier, that is:

lock()

getReward()

_processExpiredLocks()

_notifyReward()

As a result the contract will need to call shutdown() and the users will only be able to receive their

staked tokens via emergencyWithdraw() , which does not transfer the users the reward tokens.

Note that if one reward token overflows this will cause a revert on all reward tokens due to the loop
over reward tokens.

This issue will always be present if the staked token is one with a low number of decimal places
such as USDC or USDT which have 6 decimal places. This is because the totalSupply will be

limited in size by the decimal places of the stakingToken .

The overflow may occur due to the base of values in _rewardPerToken() .

 //cvx.mint(address(this), cvxReward);
 pool.accCvxPerShare = pool.accCvxPerShare.add(
 cvxReward.mul(1e12).div(lpSupply)
);
 pool.lastRewardBlock = block.number;
 }

Proof of Concept

Recommended Mitigation Steps

[M-14] INTEGER OVERFLOW WILL LOCK ALL REWARDS IN AURALOCKER

Proof of Concept

 function _rewardPerToken(address _rewardsToken) internal view returns (uint256) {
 if (lockedSupply == 0) {

d d k d k d

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L118
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L186-L206
https://github.com/code-423n4/2022-05-aura-findings/issues/151#issuecomment-1138636754
https://github.com/code-423n4/2022-05-aura-findings/issues/151
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L176-L177
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L802-L814
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L864
https://github.com/code-423n4/2022-05-aura-findings/issues/261

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 23/68

The return value of _rewardPerToken() is in terms of

Here (now - lastUpdateTime) has a maximum value of rewardDuration = 6 * 10**5 .

Now rewardRate is the _reward.div(rewardsDuration) as seen in _notifyRewardAmount() on

line #864. Note that rewardDuration is a constant 604,800.

rewardDuration = 6 * 10**5

Thus, if we have a rewards such as AURA or WETH (or most ERC20 tokens) which have units 10**18
we can transfer 1 WETH to the reward distributor which calls _notifyRewardAmount() and sets the

reward rate to,

rewardRate = 10**18 / (6 * 10**5) ~= 10**12

Finally, if this attack is run either by the first depositor they may lock() a single token which would

set totalSupply = 1 .

Therefore our equation in terms of units will become,

In since rewardPerTokenStored is a uint96 it has a maximum value of 2**96 ~= 7.9 * 10**28 .

Hence there will be an overflow in newRewardPerToken.to96() . Since we are unable to add more
total supply due to lock() reverting there will be no way to circumvent this revert except to

shutdown() .

Note this attack is described when we have a low totalSupply . However it is also possible to
apply this attack on a larger totalSupply when there are reward tokens which have decimal places

larger than 18 or tokens which such as SHIB which have small token value and so many of the
tokens can be bought for cheap.

To mitigate this issue it is recommended to increase the size of the rewardPerTokenStored . Since

updating this value will require another slot to be used we recommend updating this to either
uint256 or to update both rewardRate and rewardPerTokenStored to be uint224 .

0xMaharishi (Aura Finance) confirmed, but disagreed with severity and commented:

 return rewardData[_rewardsToken].rewardPerTokenStored;
 }
 return
 uint256(rewardData[_rewardsToken].rewardPerTokenStored).add(
 _lastTimeRewardApplicable(rewardData[_rewardsToken].periodFinish)
 .sub(rewardData[_rewardsToken].lastUpdateTime)
 .mul(rewardData[_rewardsToken].rewardRate)
 .mul(1e18)
 .div(lockedSupply)
);
 }

(now - lastUpdateTime) * rewardRate * 10**18 / totalSupply

(now - lastUpdateTime) * rewardRate * 10**18 / totalSupply => 10**5 * 10**12 * 10**18 /

 uint256 newRewardPerToken = _rewardPerToken(token);
 rewardData[token].rewardPerTokenStored = newRewardPerToken.to96();

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1140243416

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 24/68

Given that the staked token will have 18 decimals (it’s the aura token) and there will be at
least 1e21 units in there before any rewards come, it would take a number of tokens equal
to 7.9e49 to be distributed to get this overflow.

I think that while this is certainly a possibility, it would take an orchestrated governance
attack and wouldn’t necessarily put any funds at risk. That said, a solid mitigation would
be to enforce rewardRate < 1e17 in the notifyRewardAmount, therefore it would never be

possible for this to happen.

IMO this should be a medium risk.

LSDan (judge) decreased severity to Medium and commented:

Agree with sponsor about the downgrade to medium. This requires external factors to be
an issue, including potential governance collusion in the attack.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by cccz

Same as https://github.com/code-423n4/2022-02-concur-findings/issues/244

All calculations are rounded down, since a lack of tokens in the contracts cannot be rounding errors’
fault. So the function is redundant.

On the other hand, if the contract is undersupplied with cvx tokens, this will cause depositors to be
sent less tokens than needed (or none). This is especially unsafe because the tokens that were
lacking are not resembled in accountings at all. Thus a depositor may invoke the
safeRewardTransfer and not receive tokens they were supposed to.

ConvexMasterChef.sol#L299-L306

Use usual safeTransfer instead of safeRewardTransfer.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Reward tokens are transferred here before rewards start.

LSDan (judge) commented:

I agree with this report. The fallback situation in this function specifically prioritizes loss of
funds over bricking the contract, which while laudable, results in what is effectively a silent
failure case.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

Submitted by QuantumBrief

DDOS to liquidity providers in BalLiquidityProvider.

[M-15] CONVEXMASTERCHEF: SAFEREWARDTRANSFER CAN CAUSE LOSS OF
FUNDS

Proof of Concept

Recommended Mitigation Steps

[M-16] DDOS IN BALLIQUIDITYPROVIDER

https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1160710719
https://github.com/code-423n4/2022-05-aura-findings/issues/261#issuecomment-1141474956
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-02-concur-findings/issues/244
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L299-L306
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1140246065
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1163805621
https://github.com/code-423n4/2022-05-aura-findings/issues/272#issuecomment-1141475114
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura-findings/issues/272
https://github.com/code-423n4/2022-05-aura-findings/issues/285

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 25/68

bal is equal to the contract’s balance of the asset: BalLiquidityProvider.sol#L56

bal is required to be equal to the input parameter _request.maxAmountsIn[i]:
BalLiquidityProvider.sol#L57

An attacker can front-run liquidity providers by sending 1 Wei of the asset to make the balance not
equal to the input. This can be repeated and be used to impede the liquidity provider from using the
function which will always revert since bal != _request.maxAmountsIn[i]

Balances shouldn’t be required to be equal to an input variable. An attacker can always make the
balance a little bigger. This check should be removed or changed to require (bal >=
_request.maxAmountsIn[i]).

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Fair report 👍

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by hyh

Reward token accounting update in deposit() and withdraw() happens after reward transfer. If
reward token allows for the control of transfer call flow or can be upgraded to allow it in the future
(i.e. have or can introduce the _beforetokentransfer, _afterTokenTransfer type of hooks; or, say, can
be upgraded to ERC777), the current implementation makes it possible to drain all the reward token
funds of the contract by directly reentering deposit() or withdraw() with tiny _amount.

Setting the severity to medium as this is conditional to transfer flow control assumption, but the
impact is the full loss of contract reward token holdings.

Both withdraw() and deposit() have the issue, performing late accounting update and not controlling
for reentrancy:

ConvexMasterChef.sol#L209-L221

Proof of Concept

Recommended Mitigation Steps

[M-17] CONVEXMASTERCHEF’S DEPOSIT AND WITHDRAW CAN BE
REENTERED DRAWING ALL REWARD FUNDS FROM THE CONTRACT IF
REWARD TOKEN ALLOWS FOR TRANSFER FLOW CONTROL

Proof of Concept

 function deposit(uint256 _pid, uint256 _amount) public {
 PoolInfo storage pool = poolInfo[_pid];
 UserInfo storage user = userInfo[_pid][msg.sender];
 updatePool(_pid);
 if (user.amount > 0) {
 uint256 pending = user
 .amount
 .mul(pool.accCvxPerShare)
 .div(1e12)
 .sub(user.rewardDebt);
 safeRewardTransfer(msg.sender, pending);
 }
 pool.lpToken.safeTransferFrom(

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L56
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L57
https://github.com/code-423n4/2022-05-aura-findings/issues/285#issuecomment-1140251794
https://github.com/code-423n4/2022-05-aura-findings/issues/285#issuecomment-1141475216
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L209-L221
https://github.com/code-423n4/2022-05-aura-findings/issues/313

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 26/68

ConvexMasterChef.sol#L239-L250

Consider adding a direct reentrancy control, e.g. nonReentrant modifier:

https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard

Also, consider finishing all internal state updates prior to external calls:

https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/#pitfalls-in-
reentrancy-solutions

0xMaharishi (Aura Finance) confirmed and commented:

Protected by governance, but agree could be solved with simple reentrancy guard.

0xMaharishi (Aura Finance) resolved:

code-423n4/2022-05-aura#6

code4rena aurafinance/aura-contracts#84

Submitted by IllIllI, also found by csanuragjain

Users are charged the penalty due to admin actions, and they have no way to avoid it

When claiming their rewards, users are charged a penalty if they take the reward directly, rather than
by passing it into the auraLocker . Those are the only two options:

AuraBalRewardPool.sol#L176-L186

 function withdraw(uint256 _pid, uint256 _amount) public {
 PoolInfo storage pool = poolInfo[_pid];
 UserInfo storage user = userInfo[_pid][msg.sender];
 require(user.amount >= _amount, "withdraw: not good");
 updatePool(_pid);
 uint256 pending = user.amount.mul(pool.accCvxPerShare).div(1e12).sub(
 user.rewardDebt
);
 safeRewardTransfer(msg.sender, pending);
 user.amount = user.amount.sub(_amount);
 user.rewardDebt = user.amount.mul(pool.accCvxPerShare).div(1e12);
 pool.lpToken.safeTransfer(address(msg.sender), _amount);

Recommended Mitigation Steps

[M-18] AURABALREWARDPOOL CHARGES A PENALTY TO ALL USERS IN
THE POOL IF THE AURALOCKER HAS BEEN SHUT DOWN

Proof of Concept

File: contracts/AuraBalRewardPool.sol #1

176 function getReward(bool _lock) public updateReward(msg.sender) returns (bool)
177 uint256 reward = rewards[msg.sender];
178 if (reward > 0) {
179 rewards[msg.sender] = 0;
180 if (_lock) {
181 auraLocker.lock(msg.sender, reward);
182 } else {
183 uint256 penalty = (reward * 2) / 10;
184 pendingPenalty += penalty;
185 rewardToken.safeTransfer(msg.sender, reward - penalty);
186 }

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L239-L250
https://docs.openzeppelin.com/contracts/2.x/api/utils#ReentrancyGuard
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/#pitfalls-in-reentrancy-solutions
https://github.com/code-423n4/2022-05-aura-findings/issues/313#issuecomment-1140258550
https://github.com/code-423n4/2022-05-aura-findings/issues/313#issuecomment-1141475322
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L176-L186
https://github.com/code-423n4/2022-05-aura-findings/issues/179

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 27/68

If the pool has been shut down, the auraLocker.lock() call will always revert, which means the

user must take the penalty path:

AuraLocker.sol#L258-L260

Don’t charge the penalty if the locker has been shut down.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

The auraBAL reward pool only runs for 2 weeks at the beginning of the protocol. It’s highly
unlikely the AuraLocker will be shut down.

Submitted by WatchPug

CrvDepositor.sol#L127-L134

In _lockCurve() , unlockInWeeks - unlockTime is being used as a number in weeks, while it

actually is a number in seconds.

Thus, comparing it with 2 actually means a 2 seconds buffer instead of a 2 weeks buffer.

The intention is to wait for 2 weeks before extending the lock time again, but the current
implementation allows the extension of the lock once a new week begins.

Consider changing the name of unlockTime to unlockTimeInWeeks , and:

1. Change L94-102 to:

CrvDepositor.sol#L94-L102

File: contracts/AuraLocker.sol #2

258 function _lock(address _account, uint256 _amount) internal {
259 require(_amount > 0, "Cannot stake 0");
260 require(!isShutdown, "shutdown");

Recommended Mitigation Steps

[M-19] CRVDEPOSITOR.SOL WRONG IMPLEMENTATION OF THE 2-WEEK
BUFFER FOR LOCK

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = (unlockAt/WEEK)*WEEK;

//increase time too if over 2 week buffer
if(unlockInWeeks.sub(unlockTime) > 2){
 IStaker(staker).increaseTime(unlockAt);
 unlockTime = unlockInWeeks;
}

Recommended Mitigation Steps

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = unlockAt / WEEK;

//release old lock if exists
IStaker(staker).release();
//create new lock
uint256 crvBalanceStaker = IERC20(crvBpt).balanceOf(staker);
IStaker(staker).createLock(crvBalanceStaker, unlockAt);

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L258-L260
https://github.com/code-423n4/2022-05-aura-findings/issues/179#issuecomment-1138697795
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L127-L134
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L94-L102
https://github.com/code-423n4/2022-05-aura-findings/issues/343

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 28/68

2. Change L127-L134 to:

0xMaharishi (Aura Finance) confirmed and resolved:

code-423n4/2022-05-aura#6

Submitted by catchup

ConvexMasterChef.sol#L178-L183

massUpdatePools() is a public function and it calls the updatePool() function for the length of
poolInfo. Hence, it is an unbounded loop, depending on the length of poolInfo.

If poolInfo.length is big enough, block gas limit may be hit.

https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/#dos-with-
block-gas-limit

I suggest to limit the max number of loop iterations to prevent hitting block gas limit.

0xMaharishi (Aura Finance) disagreed with severity and commented:

Duplicate of #147

LSDan (judge) commented:

This is not a duplicate of Duplicate of #147 and is also clearly documented as a potential
issue in the code itself. If the admin were to accidentally add too many pools the contract
would be affected, but the likelihood of this is low and if it were to happen, the admin
could still turn off the pools and migrate to another contract. This would, however, affect
the protocol in a severely negative way. Not fully updating all of the pools would potentially
cause accounting issue and lead to loss of earned rewards. Given the impact and
likelihood together, I think medium is actually reasonable in this case.

IllIllI000 (warden) commented:

@LSDan- The massUpdatePool() function was found to be non-critical in previous

contests (https://github.com/code-423n4/2022-02-concur-findings/issues/161) and when
I filed the issue with Convex for their bug bounty, they rejected it saying it was a “non-
issue” and didn’t meet their criteria for a bounty. Furthermore, ConvexMasterChef.sol is
not listed as in scope for this contest: https://github.com/code-423n4/2022-05-
aura#contracts-of-interest

dmitriia (warden) commented:

unlockTimeInWeeks = unlockInWeeks;

uint256 unlockAt = block.timestamp + MAXTIME;
uint256 unlockInWeeks = unlockAt / WEEK;

//increase time too if over 2 week buffer
if(unlockInWeeks.sub(unlockTime) > 2){
 IStaker(staker).increaseTime(unlockAt);
 unlockTimeInWeeks = unlockInWeeks;
}

[M-20] MASSUPDATEPOOLS() IS SUSCEPTIBLE TO DOS WITH BLOCK GAS
LIMIT

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura-findings/issues/343#issuecomment-1141475468
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/main/convex-platform/contracts/contracts/ConvexMasterChef.sol#L178-L183
https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/#dos-with-block-gas-limit
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1139677686
https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1163797599
https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1179486987
https://github.com/code-423n4/2022-02-concur-findings/issues/161
https://github.com/code-423n4/2022-05-aura#contracts-of-interest
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1179587719
https://github.com/code-423n4/2022-05-aura-findings/issues/197

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 29/68

@IllIllI000- Actually the scope was all non-test contracts, https://github.com/code-
423n4/2022-05-aura#repo

LSDan (judge) commented:

@IllIllI000- Unlike the other contest, massUpdatePools() is used in this contract. I’m going

to keep this as medium.

0xMaharishi (Aura Finance) confirmed and resolved

Submitted by cccz

Same as IDX-003 in https://public-
stg.inspex.co/report/Inspex_AUDIT2021024_LuckyLion_Farm_FullReport_v2.0.pdf

The totalAllocPoint variable is used to determine the portion that each pool would get from the total
reward, so it is one of the main factors used in the rewards calculation. Therefore, whenever the
totalAllocPoint variable is modified without updating the pending reward first, the reward of each
pool will be incorrectly calculated.

For example, when _withUpdate is false, in the add() shown below, the totalAllocPoint variable will
be modified without updating the rewards (massUpdatePools()).

ConvexMasterChef.sol#L96-L138

Removing the _withUpdate variable in the add() and set() functions and always calling the
massUpdatePools() function before updating totalAllocPoint variable.

0xMaharishi (Aura Finance) confirmed and commented:

We didn’t change this from the Convex implementation. I believe it is there to protect the
contract from bricking in case there are too many pools added. The choice here is
between giving admin the ability to brick, and giving admin the responsibility of adding the
correct alloc points. I think we should remove as advised, because we are only likely to
have a few pools.

[M-21] CONVEXMASTERCHEF: WHEN USING ADD() AND SET(), IT SHOULD
ALWAYS CALL MASSUPDATEPOOLS() TO UPDATE ALL POOLS

 function add(
 uint256 _allocPoint,
 IERC20 _lpToken,
 IRewarder _rewarder,
 bool _withUpdate
) public onlyOwner {
 if (_withUpdate) {
 massUpdatePools();
 }
 uint256 lastRewardBlock = block.number > startBlock
 ? block.number
 : startBlock;
 totalAllocPoint = totalAllocPoint.add(_allocPoint);
 poolInfo.push(
 PoolInfo({
 lpToken: _lpToken,
 allocPoint: _allocPoint,
 lastRewardBlock: lastRewardBlock,
 accCvxPerShare: 0,
 rewarder: _rewarder
 })
);
 }

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2022-05-aura#repo
https://github.com/code-423n4/2022-05-aura-findings/issues/197#issuecomment-1180927499
https://github.com/code-423n4/2022-05-aura-findings/issues/197
https://public-stg.inspex.co/report/Inspex_AUDIT2021024_LuckyLion_Farm_FullReport_v2.0.pdf
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L138
https://github.com/code-423n4/2022-05-aura-findings/issues/147#issuecomment-1138626980
https://github.com/code-423n4/2022-05-aura-findings/issues/147

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 30/68

0xMaharishi (Aura Finance) resolved:

code4rena aurafinance/aura-contracts#84

All code4rena fixes code-423n4/2022-05-aura#6

Submitted by csanuragjain, also found by cccz

ConvexMasterChef.sol#L96

It was observed that add function is not checking for duplicate lpToken which allows 2 or more
pools to have exact same lpToken. This can cause issue with reward distribution

In case of duplicate lpToken, lpSupply will become incorrect (ConvexMasterChef.sol#L160), hence
rewards will be calculated incorrectly

1. Owner call add function and uses lpToken as A

2. Owner again call add function and mistakenly provides lpToken as A

3. Now 2 pools will be created with lpToken as A

4. This becomes a problem while reward calculation or updatePool function which uses
pool.lpToken.balanceOf(address(this)). Since both pool have same lpToken so lpSupply will be
calculated as same which is wrong. Since lpSupply defines the rewardRate so this directly
impact reward calculation

Add a global variable keeping track of all lpToken added for pool. In case of duplicate lpToken add
function should fail.

0xMaharishi (Aura Finance) acknowledged, but disagreed with severity and commented:

Given the result of this would be a net negative to everyone (due to overall increased lp
token supply) there doesn’t seem to be any incentive for anyone to do this. Considering
that the owner is a distributed 4 of 7 multisig, i think it is an acceptable scenario.

LSDan (judge) commented:

I’m going to let this one stand. Multisigs make mistakes and it would be trivial to prevent
this one.

For this contest, 76 reports were submitted by wardens detailing low risk and non-critical issues.
The report highlighted below by IllIllI received the top score from the judge.

The following wardens also submitted reports: MaratCerby, reassor, BowTiedWardens, TerrierLover,
SmartSek, 0x4non, 0xNazgul, hyh, robee, tintin, catchup, defsec, Hawkeye, joestakey, _Adam, 0x1f8b,
fatherOfBlocks, Funen, berndartmueller, cryptphi, hansfriese, kenta, Nethermind, PPrieditis,
QuantumBrief, Rolezn, sorrynotsorry, 0xf15ers, bobirichman, BouSalman, c3phas, cccz, cthulhu_cult,
FSchmoede, Kaiziron, kenzo, mics, MiloTruck, p_crypt0, Ruhum, sseefried, Tadashi, unforgiven,
WatchPug, 0xkatana, CertoraInc, csanuragjain, delfin454000, ellahi, GimelSec, JC, Kthere, sashik_eth,
sikorico, simon135, Waze, oyc_109, 242, 0xNineDec, AlleyCat, asutorufos, ch13fd357r0y3r, Chom,

[M-22] DUPLICATE LP TOKEN COULD LEAD TO INCORRECT REWARD
DISTRIBUTION

Proof of Concept

Recommended Mitigation Steps

Low Risk and Non-Critical Issues

https://github.com/code-423n4/2022-05-aura-findings/issues/147
https://github.com/aurafinance/aura-contracts/pull/84
https://github.com/code-423n4/2022-05-aura/pull/6
https://github.com/code-423n4/2022-05-aura/blob/main/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96
https://github.com/code-423n4/2022-05-aura-findings/issues/124#issuecomment-1138394820
https://github.com/code-423n4/2022-05-aura-findings/issues/124#issuecomment-1163802748
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/17
https://github.com/code-423n4/2022-05-aura-findings/issues/295
https://github.com/code-423n4/2022-05-aura-findings/issues/337
https://github.com/code-423n4/2022-05-aura-findings/issues/249
https://github.com/code-423n4/2022-05-aura-findings/issues/246
https://github.com/code-423n4/2022-05-aura-findings/issues/25
https://github.com/code-423n4/2022-05-aura-findings/issues/28
https://github.com/code-423n4/2022-05-aura-findings/issues/362
https://github.com/code-423n4/2022-05-aura-findings/issues/45
https://github.com/code-423n4/2022-05-aura-findings/issues/194
https://github.com/code-423n4/2022-05-aura-findings/issues/203
https://github.com/code-423n4/2022-05-aura-findings/issues/291
https://github.com/code-423n4/2022-05-aura-findings/issues/287
https://github.com/code-423n4/2022-05-aura-findings/issues/153
https://github.com/code-423n4/2022-05-aura-findings/issues/207
https://github.com/code-423n4/2022-05-aura-findings/issues/83
https://github.com/code-423n4/2022-05-aura-findings/issues/150
https://github.com/code-423n4/2022-05-aura-findings/issues/304
https://github.com/code-423n4/2022-05-aura-findings/issues/308
https://github.com/code-423n4/2022-05-aura-findings/issues/269
https://github.com/code-423n4/2022-05-aura-findings/issues/218
https://github.com/code-423n4/2022-05-aura-findings/issues/326
https://github.com/code-423n4/2022-05-aura-findings/issues/254
https://github.com/code-423n4/2022-05-aura-findings/issues/235
https://github.com/code-423n4/2022-05-aura-findings/issues/282
https://github.com/code-423n4/2022-05-aura-findings/issues/213
https://github.com/code-423n4/2022-05-aura-findings/issues/310
https://github.com/code-423n4/2022-05-aura-findings/issues/329
https://github.com/code-423n4/2022-05-aura-findings/issues/43
https://github.com/code-423n4/2022-05-aura-findings/issues/92
https://github.com/code-423n4/2022-05-aura-findings/issues/161
https://github.com/code-423n4/2022-05-aura-findings/issues/154
https://github.com/code-423n4/2022-05-aura-findings/issues/306
https://github.com/code-423n4/2022-05-aura-findings/issues/130
https://github.com/code-423n4/2022-05-aura-findings/issues/206
https://github.com/code-423n4/2022-05-aura-findings/issues/275
https://github.com/code-423n4/2022-05-aura-findings/issues/39
https://github.com/code-423n4/2022-05-aura-findings/issues/159
https://github.com/code-423n4/2022-05-aura-findings/issues/172
https://github.com/code-423n4/2022-05-aura-findings/issues/183
https://github.com/code-423n4/2022-05-aura-findings/issues/268
https://github.com/code-423n4/2022-05-aura-findings/issues/252
https://github.com/code-423n4/2022-05-aura-findings/issues/294
https://github.com/code-423n4/2022-05-aura-findings/issues/348
https://github.com/code-423n4/2022-05-aura-findings/issues/192
https://github.com/code-423n4/2022-05-aura-findings/issues/300
https://github.com/code-423n4/2022-05-aura-findings/issues/47
https://github.com/code-423n4/2022-05-aura-findings/issues/271
https://github.com/code-423n4/2022-05-aura-findings/issues/274
https://github.com/code-423n4/2022-05-aura-findings/issues/226
https://github.com/code-423n4/2022-05-aura-findings/issues/355
https://github.com/code-423n4/2022-05-aura-findings/issues/187
https://github.com/code-423n4/2022-05-aura-findings/issues/323
https://github.com/code-423n4/2022-05-aura-findings/issues/41
https://github.com/code-423n4/2022-05-aura-findings/issues/259
https://github.com/code-423n4/2022-05-aura-findings/issues/215
https://github.com/code-423n4/2022-05-aura-findings/issues/100
https://github.com/code-423n4/2022-05-aura-findings/issues/298
https://github.com/code-423n4/2022-05-aura-findings/issues/217
https://github.com/code-423n4/2022-05-aura-findings/issues/12
https://github.com/code-423n4/2022-05-aura-findings/issues/169
https://github.com/code-423n4/2022-05-aura-findings/issues/5
https://github.com/code-423n4/2022-05-aura-findings/issues/230
https://github.com/code-423n4/2022-05-aura-findings/issues/124

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 31/68

jayjonah8, JDeryl, kirk-baird, NoamYakov, sach1r0, samruna, SooYa, z3s, hubble, Cityscape, Kumpa,
and zmj.

L-01 Wrong amounts sent if arrays don’t match 1
L-02 Incorrect/misleading NatSpec 1
L-03 Function reverts if called a second time 1
L-04 pragma experimental ABIEncoderV2 is deprecated 1

L-05 safeApprove() is deprecated 36

L-06 Missing checks for address(0x0) when assigning values to address state variables 103

Total: 143 instances over 6 issues

N‑01 Unused file 1
N‑02 Call For / From variants instead of copying an pasting code 1
N‑03 Remove tautological code 1
N‑04 Adding a return statement when the function defines a named return variable, is redundant 3

N‑05
override function arguments that are unused should have the variable name removed or commented

out to avoid compiler warnings
1

N‑06 public functions not called by the contract should be declared external instead 18

N‑07 type(uint<n>).max should be used instead of uint<n>(-1) 8

N‑08 constant s should be defined rather than using magic numbers 47
N‑09 Redundant cast 2
N-10 Numeric values having to do with time should use time units for readability 4
N-11 Missing event for critical parameter change 24
N-12 Use a more recent version of solidity 1
N-13 Use a more recent version of solidity 26
N-14 Use a more recent version of solidity 1
N-15 Constant redefined elsewhere 38
N-16 Inconsistent spacing in comments 80
N-17 Non-library/interface files should use fixed compiler versions, not floating ones 12
N-18 Typos 29
N-19 File is missing NatSpec 6
N-20 NatSpec is incomplete 21
N‑21 Event is missing indexed fields 66

Total: 390 instances over 21 issues

The caller may make a copy-paste error where they provide all amounts, but miss one of the
recipients in the middle of the list they’re copying. This will cause all recipients after that mistake to
get the wrong amounts, and the function will not revert

There is 1 instance of this issue:

SUMMARY

Low Risk Issues

Issue Instances

Non-critical Issues

Issue Instances

[L-01] WRONG AMOUNTS SENT IF ARRAYS DON’T MATCH

File: contracts/AuraVestedEscrow.sol #1

96: function fund(address[] calldata _recipient, uint256[] calldata _amount) extern

https://github.com/code-423n4/2022-05-aura-findings/issues/35
https://github.com/code-423n4/2022-05-aura-findings/issues/66
https://github.com/code-423n4/2022-05-aura-findings/issues/265
https://github.com/code-423n4/2022-05-aura-findings/issues/257
https://github.com/code-423n4/2022-05-aura-findings/issues/140
https://github.com/code-423n4/2022-05-aura-findings/issues/59
https://github.com/code-423n4/2022-05-aura-findings/issues/10
https://github.com/code-423n4/2022-05-aura-findings/issues/312
https://github.com/code-423n4/2022-05-aura-findings/issues/361
https://github.com/code-423n4/2022-05-aura-findings/issues/276
https://github.com/code-423n4/2022-05-aura-findings/issues/279
https://github.com/code-423n4/2022-05-aura-findings/issues/114

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 32/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L96

The function retrieves the number of votes at the end of an epoch, not at the end of a block.
Furthermore, blockNumber is not an actual variable name

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L595

safeApprove() reverts if called a second time without fist calling safeApprove(0)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L51-
L54

Use pragma abicoder v2 instead

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L3

[L-02] INCORRECT/MISLEADING NATSPEC

File: contracts/AuraLocker.sol #1

595: * @dev Retrieve the number of votes for `account` at the end of `blockNumber`.

[L-03] FUNCTION REVERTS IF CALLED A SECOND TIME

File: contracts/CrvDepositorWrapper.sol #1

/// @audit `setApprovals()` is an external function that calls this function. If it's ca
51 function _setApprovals() internal {
52 IERC20(WETH).safeApprove(address(BALANCER_VAULT), type(uint256).max);
53 IERC20(BAL).safeApprove(address(BALANCER_VAULT), type(uint256).max);
54: }

[L-04] PRAGMA EXPERIMENTAL ABIENCODERV2 IS DEPRECATED

File: contracts/AuraLocker.sol #1

3: pragma experimental ABIEncoderV2;

[L-05] SAFEAPPROVE() IS DEPRECATED

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L96
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L595
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L51-L54
https://github.com/ethereum/solidity/blob/69411436139acf5dbcfc5828446f18b9fcfee32c/docs/080-breaking-changes.rst#silent-changes-of-the-semantics
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L3

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 33/68

Deprecated in favor of safeIncreaseAllowance() and safeDecreaseAllowance() . If only setting

the initial allowance to the value that means infinite, safeIncreaseAllowance() can be used instead

There are 36 instances of this issue. For details, see the warden’s full report.

There are 103 instances of this issue. For details, see the warden’s full report.

The file is never imported by any other file

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/BoringMath.sol#L0

Duplicating code can lead to errors when a change is made to only one of the locations

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L120-
L130

There is 1 instance of this issue:

[L-06] MISSING CHECKS FOR ADDRESS(0X0) WHEN ASSIGNING VALUES
TO ADDRESS STATE VARIABLES

[N-01] UNUSED FILE

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol #1

0: // SPDX-License-Identifier: MIT

[N-02] CALL FOR/FROM VARIANTS INSTEAD OF COPYING AN PASTING
CODE

File: contracts/AuraBalRewardPool.sol #1

/// @audit This function should call `stakeFor(msg.sender, _amount)` instead
120 function stake(uint256 _amount) public updateReward(msg.sender) returns (bool)
121 require(_amount > 0, "RewardPool : Cannot stake 0");
122
123 _totalSupply = _totalSupply.add(_amount);
124 _balances[msg.sender] = _balances[msg.sender].add(_amount);
125
126 stakingToken.safeTransferFrom(msg.sender, address(this), _amount);
127 emit Staked(msg.sender, _amount);
128
129 return true;
130: }

[N-03] REMOVE TAUTOLOGICAL CODE

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bfff03c0d2a59bcd8e2ead1da9aed9edf0080d05/contracts/token/ERC20/utils/SafeERC20.sol#L38-L45
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L0
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L120-L130

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 34/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L75

There are 3 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L678

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L778

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L196

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool4626.sol#L134

File: convex-platform/contracts/contracts/CrvDepositor.sol #1

/// @audit `_lockIncentive` is always greater than or equal to zero, so the condition sh
75: if(_lockIncentive >= 0 && _lockIncentive <= 30){

[N-04] ADDING A RETURN STATEMENT WHEN THE FUNCTION DEFINES
A NAMED RETURN VARIABLE, IS REDUNDANT

File: contracts/AuraLocker.sol #1

678: return amount;

File: contracts/AuraLocker.sol #2

778: return userRewards;

File: convex-platform/contracts/contracts/VoterProxy.sol #3

196: return balance;

[N-05] OVERRIDE FUNCTION ARGUMENTS THAT ARE UNUSED SHOULD
HAVE THE VARIABLE NAME REMOVED OR COMMENTED OUT TO AVOID
COMPILER WARNINGS

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol #1

134: function maxDeposit(address owner) public view virtual override returns (uint2

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L75
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L678
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L778
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L196
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L134

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 35/68

Contracts are allowed to override their parents’ functions and change the visibility from external

to public .

There are 18 instances of this issue. For details, see the warden’s full report.

There are 8 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/BoringMath.sol#L25

There are 47 instances of this issue. For details, see the warden’s full report.

The type of the variable is the same as the type to which the variable is being cast

There are 2 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L654

[N-06] PUBLIC FUNCTIONS NOT CALLED BY THE CONTRACT SHOULD
BE DECLARED EXTERNAL INSTEAD

[N-07] TYPE(UINT<N>).MAX SHOULD BE USED INSTEAD OF UINT<N>(-1)

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol

25: require(a <= uint128(-1), "BoringMath: uint128 Overflow");

30: require(a <= uint64(-1), "BoringMath: uint64 Overflow");

35: require(a <= uint32(-1), "BoringMath: uint32 Overflow");

40: require(a <= uint40(-1), "BoringMath: uint40 Overflow");

45: require(a <= uint112(-1), "BoringMath: uint112 Overflow");

50: require(a <= uint224(-1), "BoringMath: uint224 Overflow");

55: require(a <= uint208(-1), "BoringMath: uint208 Overflow");

60: require(a <= uint216(-1), "BoringMath: uint216 Overflow");

[N-08] CONSTANTS SHOULD BE DEFINED RATHER THAN USING MAGIC
NUMBERS

[N-09] REDUNDANT CAST

File: contracts/AuraLocker.sol #1

/// @audit uint256(_epoch)
654: uint256 epochStart = uint256(epochs[0].date).add(uint256(_epoch).mul(rewar

File: contracts/AuraLocker.sol #2

/// @audit uint256(_epoch)
718: uint256 epochStart = uint256(epochs[0].date).add(uint256(_epoch).mul(rewar

https://docs.soliditylang.org/en/latest/contracts.html#function-overriding
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L25
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L654

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 36/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L718

There are units for seconds, minutes, hours, days, and weeks

There are 4 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L81

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L60

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L26

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L27

There are 24 instances of this issue. For details, see the warden’s full report.

[N-10] NUMERIC VALUES HAVING TO DO WITH TIME SHOULD USE
TIME UNITS FOR READABILITY

File: contracts/AuraLocker.sol #1

/// @audit 86400
81: uint256 public constant rewardsDuration = 86400 * 7;

File: contracts/CrvDepositorWrapper.sol #2

/// @audit 3600
60: queries[0].secs = 3600; // last hour

File: convex-platform/contracts/contracts/CrvDepositor.sol #3

/// @audit 86400
26: uint256 private constant MAXTIME = 1 * 364 * 86400;

File: convex-platform/contracts/contracts/CrvDepositor.sol #4

/// @audit 86400
27: uint256 private constant WEEK = 7 * 86400;

[N-11] MISSING EVENT FOR CRITICAL PARAMETER CHANGE

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L718
https://docs.soliditylang.org/en/latest/units-and-global-variables.html#time-units
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L81
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L60
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L26
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L27
https://github.com/code-423n4/2022-05-aura-findings/issues/173

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 37/68

Use a solidity version of at least 0.8.12 to get string.concat() to be used instead of
abi.encodePacked(<str>,<str>)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2

Use a solidity version of at least 0.8.13 to get the ability to use using for with a list of free

functions

There are 26 instances of this issue. For details, see the warden’s full report.

Use a solidity version of at least 0.8.4 to get bytes.concat() instead of

abi.encodePacked(<bytes>,<bytes>)
Use a solidity version of at least 0.8.12 to get

string.concat() instead of abi.encodePacked(<str>,<str>)

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/DepositToken.sol#L2

Consider defining in only one contract so that values cannot become out of sync when only one
location is updated. A cheap way to store constants in a single location is to create an
internal constant in a library . If the variable is a local cache of another contract’s value,

consider making the cache variable internal or private, which will require external users to query the
contract with the source of truth, so that callers don’t get out of sync.

There are 38 instances of this issue. For details, see the warden’s full report.

Some lines use // x and some use //x . The instances below point out the usages that don’t

follow the majority, within each file

There are 80 instances of this issue. For details, see the warden’s full report.

[N-12] USE A MORE RECENT VERSION OF SOLIDITY

File: contracts/AuraMerkleDrop.sol #1

2: pragma solidity ^0.8.11;

[N-13] USE A MORE RECENT VERSION OF SOLIDITY

[N-14] USE A MORE RECENT VERSION OF SOLIDITY

File: convex-platform/contracts/contracts/DepositToken.sol #1

2: pragma solidity 0.6.12;

[N-15] CONSTANT REDEFINED ELSEWHERE

[N-16] INCONSISTENT SPACING IN COMMENTS

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/DepositToken.sol#L2
https://medium.com/coinmonks/gas-cost-of-solidity-library-functions-dbe0cedd4678
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 38/68

There are 12 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMinter.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L2

[N-17] NON-LIBRARY/INTERFACE FILES SHOULD USE FIXED
COMPILER VERSIONS, NOT FLOATING ONES

File: contracts/AuraClaimZap.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraMinter.sol

2: pragma solidity ^0.8.11;

File: contracts/ExtraRewardsDistributor.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraMerkleDrop.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraPenaltyForwarder.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraBalRewardPool.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraLocker.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMinter.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L2

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 39/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L2

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L2

There are 29 instances of this issue. For details, see the warden’s full report.

There are 6 instances of this issue:

2: pragma solidity ^0.8.11;

File: contracts/ClaimFeesHelper.sol

2: pragma solidity ^0.8.11;

File: contracts/Aura.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraStakingProxy.sol

2: pragma solidity ^0.8.11;

File: contracts/AuraVestedEscrow.sol

2: pragma solidity ^0.8.11;

File: contracts/BalLiquidityProvider.sol

2: pragma solidity ^0.8.11;

[N-18] TYPOS

[N-19] FILE IS MISSING NATSPEC

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L2
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L2
https://github.com/code-423n4/2022-05-aura-findings/issues/173

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 40/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Interfaces.sol

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/IGaugeController.sol

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/IProxyFactory.sol

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/IRewardHook.sol

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/IRewarder.sol

There are 21 instances of this issue. For details, see the warden’s full report.

Each event should use three indexed fields if there are three or more fields

There are 66 instances of this issue. For details, see the warden’s full report.

File: contracts/Interfaces.sol

File: convex-platform/contracts/contracts/Interfaces.sol

File: convex-platform/contracts/contracts/interfaces/IGaugeController.sol

File: convex-platform/contracts/contracts/interfaces/IProxyFactory.sol

File: convex-platform/contracts/contracts/interfaces/IRewardHook.sol

File: convex-platform/contracts/contracts/interfaces/IRewarder.sol

[N-20] NATSPEC IS INCOMPLETE

[N-21] EVENT IS MISSING INDEXED FIELDS

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Interfaces.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IGaugeController.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IProxyFactory.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IRewardHook.sol
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/IRewarder.sol
https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/173

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 41/68

0xMaharishi (Aura Finance) acknowledged

For this contest, 66 reports were submitted by wardens detailing gas optimizations. The report
highlighted below by IllIllI received the top score from the judge.

The following wardens also submitted reports: BowTiedWardens, 0xkatana, Tomio, TerrierLover,
defsec, 0xKitsune, c3phas, joestakey, catchup, CertoraInc, hansfriese, kenta, MaratCerby, MiloTruck,
robee, sashik_eth, UnusualTurtle, _Adam, 0xf15ers, 0xNazgul, delfin454000, fatherOfBlocks, Kaiziron,
simon135, WatchPug, Waze, 0x1f8b, 0x4non, ellahi, reassor, rfa, 0v3rf10w, asutorufos, DavidGialdi,
mics, oyc_109, sach1r0, Fitraldys, FSchmoede, Funen, Hawkeye, NoamYakov, Randyyy, samruna,
sikorico, antonttc, bobirichman, csanuragjain, cthulhu_cult, GimelSec, hyh, minhquanym,
QuantumBrief, SmartSek, SooYa, unforgiven, z3s, jayjonah8, JC, Kthere, marcopaladin, orion, Ruhum,
Tadashi, and zmj.

G‑01 Remove or replace unused state variables 1

G‑02
Multiple address mappings can be combined into a single mapping of an address to a
struct , where appropriate 8

G‑03 State variables only set in the constructor should be declared immutable 6
G‑04 State variables can be packed into fewer storage slots 3
G‑05 Using calldata instead of memory for read-only arguments in external functions saves gas 6
G‑06 State variables should be cached in stack variables rather than re-reading them from storage 60
G‑07 <x> += <y> costs more gas than <x> = <x> + <y> for state variables 5

G‑08 internal functions only called once can be inlined to save gas 4

G‑09 <array>.length should not be looked up in every loop of a for -loop 13

G-10
++i / i++ should be unchecked{++i} / unchecked{i++} when it is not possible for them to

overflow, as is the case when used in for - and while -loops 13

G-11 require() / revert() strings longer than 32 bytes cost extra gas 1

G-12 keccak256() should only need to be called on a specific string literal once 1
G-13 Not using the named return variables when a function returns, wastes deployment gas 10
G-14 Using bool s for storage incurs overhead 18
G-15 Use a more recent version of solidity 28
G-16 Using > 0 costs more gas than != 0 when used on a uint in a require() statement 23
G-17 It costs more gas to initialize variables to zero than to let the default of zero be applied 26
G-18 ++i costs less gas than i++ , especially when it’s used in for -loops (--i / i-- too) 24

G-19 Splitting require() statements that use && saves gas 15

G-20 Usage of uints / ints smaller than 32 bytes (256 bits) incurs overhead 99

G-21 abi.encode() is less efficient than abi.encodePacked() 2

G-22 Using private rather than public for constants, saves gas 30
G-23 Don’t compare boolean expressions to boolean literals 9
G-24 Don’t use SafeMath once the solidity version is 0.8.0 or greater 2

G-25 Duplicated require() / revert() checks should be refactored to a modifier or function 32
G-26 Multiplication/division by two should use bit shifting 5
G-27 Stack variable used as a cheaper cache for a state variable is only used once 1
G-28 require() or revert() statements that check input arguments should be at the top of the function 11
G-29 Empty blocks should be removed or emit something 6
G-30 Use custom errors rather than revert() / require() strings to save deployment gas 101

G-31 Functions guaranteed to revert when called by normal users can be marked payable 37

G-32 public functions not called by the contract should be declared external instead 18

Total: 618 instances over 32 issues

Gas Optimizations

SUMMARY

Issue Instances

[G-01] REMOVE OR REPLACE UNUSED STATE VARIABLES

https://github.com/code-423n4/2022-05-aura-findings/issues/173
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura-findings/issues/336
https://github.com/code-423n4/2022-05-aura-findings/issues/193
https://github.com/code-423n4/2022-05-aura-findings/issues/359
https://github.com/code-423n4/2022-05-aura-findings/issues/264
https://github.com/code-423n4/2022-05-aura-findings/issues/321
https://github.com/code-423n4/2022-05-aura-findings/issues/167
https://github.com/code-423n4/2022-05-aura-findings/issues/191
https://github.com/code-423n4/2022-05-aura-findings/issues/134
https://github.com/code-423n4/2022-05-aura-findings/issues/204
https://github.com/code-423n4/2022-05-aura-findings/issues/299
https://github.com/code-423n4/2022-05-aura-findings/issues/219
https://github.com/code-423n4/2022-05-aura-findings/issues/325
https://github.com/code-423n4/2022-05-aura-findings/issues/16
https://github.com/code-423n4/2022-05-aura-findings/issues/158
https://github.com/code-423n4/2022-05-aura-findings/issues/44
https://github.com/code-423n4/2022-05-aura-findings/issues/327
https://github.com/code-423n4/2022-05-aura-findings/issues/352
https://github.com/code-423n4/2022-05-aura-findings/issues/208
https://github.com/code-423n4/2022-05-aura-findings/issues/328
https://github.com/code-423n4/2022-05-aura-findings/issues/27
https://github.com/code-423n4/2022-05-aura-findings/issues/270
https://github.com/code-423n4/2022-05-aura-findings/issues/148
https://github.com/code-423n4/2022-05-aura-findings/issues/205
https://github.com/code-423n4/2022-05-aura-findings/issues/260
https://github.com/code-423n4/2022-05-aura-findings/issues/349
https://github.com/code-423n4/2022-05-aura-findings/issues/214
https://github.com/code-423n4/2022-05-aura-findings/issues/82
https://github.com/code-423n4/2022-05-aura-findings/issues/24
https://github.com/code-423n4/2022-05-aura-findings/issues/273
https://github.com/code-423n4/2022-05-aura-findings/issues/297
https://github.com/code-423n4/2022-05-aura-findings/issues/317
https://github.com/code-423n4/2022-05-aura-findings/issues/333
https://github.com/code-423n4/2022-05-aura-findings/issues/170
https://github.com/code-423n4/2022-05-aura-findings/issues/251
https://github.com/code-423n4/2022-05-aura-findings/issues/38
https://github.com/code-423n4/2022-05-aura-findings/issues/99
https://github.com/code-423n4/2022-05-aura-findings/issues/141
https://github.com/code-423n4/2022-05-aura-findings/issues/335
https://github.com/code-423n4/2022-05-aura-findings/issues/131
https://github.com/code-423n4/2022-05-aura-findings/issues/303
https://github.com/code-423n4/2022-05-aura-findings/issues/286
https://github.com/code-423n4/2022-05-aura-findings/issues/255
https://github.com/code-423n4/2022-05-aura-findings/issues/330
https://github.com/code-423n4/2022-05-aura-findings/issues/57
https://github.com/code-423n4/2022-05-aura-findings/issues/40
https://github.com/code-423n4/2022-05-aura-findings/issues/164
https://github.com/code-423n4/2022-05-aura-findings/issues/42
https://github.com/code-423n4/2022-05-aura-findings/issues/129
https://github.com/code-423n4/2022-05-aura-findings/issues/307
https://github.com/code-423n4/2022-05-aura-findings/issues/227
https://github.com/code-423n4/2022-05-aura-findings/issues/174
https://github.com/code-423n4/2022-05-aura-findings/issues/212
https://github.com/code-423n4/2022-05-aura-findings/issues/281
https://github.com/code-423n4/2022-05-aura-findings/issues/247
https://github.com/code-423n4/2022-05-aura-findings/issues/216
https://github.com/code-423n4/2022-05-aura-findings/issues/305
https://github.com/code-423n4/2022-05-aura-findings/issues/311
https://github.com/code-423n4/2022-05-aura-findings/issues/34
https://github.com/code-423n4/2022-05-aura-findings/issues/356
https://github.com/code-423n4/2022-05-aura-findings/issues/95
https://github.com/code-423n4/2022-05-aura-findings/issues/97
https://github.com/code-423n4/2022-05-aura-findings/issues/109
https://github.com/code-423n4/2022-05-aura-findings/issues/184
https://github.com/code-423n4/2022-05-aura-findings/issues/253
https://github.com/code-423n4/2022-05-aura-findings/issues/106

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 42/68

Saves a storage slot. If the variable is assigned a non-zero value, saves Gsset (20000 gas). If it’s
assigned a zero value, saves Gsreset (2900 gas). If the variable remains unassigned, there is no gas
savings unless the variable is public , in which case the compiler-generated non-payable getter

deployment cost is saved. If the state variable is overriding an interface’s public function, mark the
variable as constant or immutable so that it does not use a storage slot

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/RewardFactory.sol#L28

Saves a storage slot for the mapping. Depending on the circumstances and sizes of types, can avoid
a Gsset (20000 gas) per mapping combined. Reads and subsequent writes can also be cheaper
when a function requires both values and they both fit in the same storage slot

There are 8 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L20-
L24

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L44-
L46

File: convex-platform/contracts/contracts/RewardFactory.sol #1

28: mapping(address => uint256[]) public rewardActiveList;

[G-02] MULTIPLE ADDRESS MAPPINGS CAN BE COMBINED INTO A
SINGLE MAPPING OF AN ADDRESS TO A STRUCT, WHERE APPROPRIATE

File: contracts/ExtraRewardsDistributor.sol

20 mapping(address => mapping(uint256 => uint256)) public rewardData;
21 // token -> epochList
22 mapping(address => uint256[]) public rewardEpochs;
23 // token -> account -> last claimed epoch index
24: mapping(address => mapping(address => uint256)) public userClaims;

File: contracts/AuraBalRewardPool.sol

44 mapping(address => uint256) public userRewardPerTokenPaid;
45 mapping(address => uint256) public rewards;
46: mapping(address => uint256) private _balances;

File: contracts/AuraLocker.sol

91 mapping(address => Balances) public balances;
92 mapping(address => LockedBalance[]) public userLocks;
93
94 // Voting
95 // Stored delegations
96 mapping(address => address) private _delegates;
97 // Checkpointed votes
98 mapping(address => DelegateeCheckpoint[]) private _checkpointedVotes;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L28
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L20-L24
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L44-L46

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 43/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L91-L100

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L35-
L36

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L35-L36

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L80-L82

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VirtualBalanceRewardPool.sol#L97-L98

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/RewardFactory.sol#L27-L28

99 // Delegatee balances (user -> unlock timestamp -> amount)
100: mapping(address => mapping(uint256 => uint256)) public delegateeUnlocks;

File: contracts/AuraVestedEscrow.sol

35 mapping(address => uint256) public totalLocked;
36: mapping(address => uint256) public totalClaimed;

File: convex-platform/contracts/contracts/VoterProxy.sol

35 mapping (address => bool) private stashPool;
36: mapping (address => bool) private protectedTokens;

File: convex-platform/contracts/contracts/BaseRewardPool.sol

80 mapping(address => uint256) public userRewardPerTokenPaid;
81 mapping(address => uint256) public rewards;
82: mapping(address => uint256) private _balances;

File: convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol

97 mapping(address => uint256) public userRewardPerTokenPaid;
98: mapping(address => uint256) public rewards;

File: convex-platform/contracts/contracts/RewardFactory.sol

27 mapping (address => bool) private rewardAccess;
28: mapping(address => uint256[]) public rewardActiveList;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L91-L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L35-L36
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L35-L36
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L80-L82
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol#L97-L98
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L27-L28

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 44/68

Avoids a Gsset (20000 gas) in the constructor, and replaces each Gwarmacces (100 gas) with a
PUSH32 (3 gas).

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L117

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L23

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/TokenFactory.sol#L21

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool4626.sol#L26

If variables occupying the same slot are both written the same function or by the constructor, avoids
a separate Gsset (20000 gas). Reads of the variables can also be cheaper

There are 3 instances of this issue:

[G-03] STATE VARIABLES ONLY SET IN THE CONSTRUCTOR SHOULD
BE DECLARED IMMUTABLE

File: contracts/AuraLocker.sol

117: string private _name;

118: string private _symbol;

File: contracts/ClaimFeesHelper.sol

23: IFeeDistributor public feeDistro;

File: convex-platform/contracts/contracts/TokenFactory.sol

21: string public namePostfix;

22: string public symbolPrefix;

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol

26: address public override asset;

[G-04] STATE VARIABLES CAN BE PACKED INTO FEWER STORAGE
SLOTS

File: convex-platform/contracts/contracts/CrvDepositor.sol #1

/// @audit Variable ordering with 5 slots instead of the current 6:
uint256(32):lockIncentive uint256(32):incentiveCrv uint256(32):unlockTime address(20

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L117
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ClaimFeesHelper.sol#L23
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/TokenFactory.sol#L21
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L26

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 45/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L29

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ExtraRewardStashV3.sol#L33

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L26

When a function with a memory array is called externally, the abi.decode() step has to use a for-

loop to copy each index of the calldata to the memory index. Each iteration of this for-loop costs
at least 60 gas (i.e. 60 * <mem_array>.length). Using calldata directly, obliviates the need for

such a loop in the contract code and runtime execution. Structs have the same overhead as an array
of length one

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol#L17

 uint256(32):lockIncentive, uint256(32):incentiveCrv, uint256(32):unlockTime, address(20
29: uint256 public lockIncentive = 10; //incentive to users who spend gas to lock

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol #2

/// @audit Variable ordering with 9 slots instead of the current 10:
 uint256(32):pid, mapping(32):historicalRewards, mapping(32):tokenInfo, address[](32):to
33: uint256 public pid;

File: convex-platform/contracts/contracts/Booster.sol #3

/// @audit Variable ordering with 18 slots instead of the current 19:
 uint256(32):lockIncentive, uint256(32):stakerIncentive, uint256(32):earmarkIncentive, u

26: uint256 public lockIncentive = 825; //incentive to crv stakers

[G-05] USING CALLDATA INSTEAD OF MEMORY FOR READ-ONLY
ARGUMENTS IN EXTERNAL FUNCTIONS SAVES GAS

File: contracts/Interfaces.sol

17: function getTimeWeightedAverage(OracleAverageQuery[] memory queries)

79: JoinPoolRequest memory request

83: SingleSwap memory singleSwap,

84: FundManagement memory funds,

93: ExitPoolRequest memory request

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L29
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L26
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Interfaces.sol#L17

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 46/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L68

The instances below point to the second+ access of a state variable within a function. Caching will
replace each Gwarmaccess (100 gas) with a much cheaper stack read.
Less obvious
fixes/optimizations include having local storage variables of mappings within state variable
mappings or mappings within state variable structs, having local storage variables of structs within
mappings, having local memory caches of state variable structs, or having local caches of state
variable contracts/addresses.

There are 60 instances of this issue. For details, see the warden’s full report.

There are 5 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L137

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L184

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L363

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L130

68: function setUsedAddress(address[] memory usedList) external onlyOwner{

[G-06] STATE VARIABLES SHOULD BE CACHED IN STACK VARIABLES
RATHER THAN RE-READING THEM FROM STORAGE

[G-07] <X> += <Y> COSTS MORE GAS THAN <X> = <X> + <Y> FOR STATE
VARIABLES

File: contracts/AuraMerkleDrop.sol

137: pendingPenalty += penalty;

File: contracts/AuraBalRewardPool.sol

184: pendingPenalty += penalty;

File: contracts/AuraLocker.sol

363: lockedSupply -= amt;

File: contracts/Aura.sol

130: minterMinted += _amount;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L68
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L137
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L184
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L363
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L130

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 47/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L66

Not inlining costs 20 to 40 gas because of two extra JUMP instructions and additional stack
operations needed for function calls.

There are 4 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L171-
L177

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L230

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ExtraRewardStashV3.sol#L124-L125

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

File: contracts/AuraVestedEscrow.sol

66: require(totalTime >= 16 weeks, "!short");

[G-08] INTERNAL FUNCTIONS ONLY CALLED ONCE CAN BE INLINED
TO SAVE GAS

File: contracts/AuraClaimZap.sol #1

171 function _claimExtras(// solhint-disable-line
172 uint256 depositCrvMaxAmount,
173 uint256 minAmountOut,
174 uint256 depositCvxMaxAmount,
175 uint256 removeCrvBalance,
176 uint256 removeCvxBalance,
177: uint256 options

File: convex-platform/contracts/contracts/VoterProxy.sol #2

230: function _withdrawSome(address _gauge, uint256 _amount) internal returns (uint

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol #3

124 function checkForNewRewardTokens() internal {
125: for(uint256 i = 0; i < maxRewards; i++){

File: convex-platform/contracts/contracts/Booster.sol #4

572: function _earmarkRewards(uint256 _pid) internal {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L66
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L171-L177
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L230
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L124-L125
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L572

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 48/68

platform/contracts/contracts/Booster.sol#L572

The overheads outlined below are PER LOOP, excluding the first loop

storage arrays incur a Gwarmaccess (100 gas)

memory arrays use MLOAD (3 gas)

calldata arrays use CALLDATALOAD (3 gas)

Caching the length changes each of these to a DUP<N> (3 gas), and gets rid of the extra DUP<N>

needed to store the stack offset

There are 13 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L696

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ArbitartorVault.sol#L49

[G-09] <ARRAY>.LENGTH SHOULD NOT BE LOOKED UP IN EVERY LOOP
OF A FOR-LOOP

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++) {

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++) {

File: contracts/AuraLocker.sol

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++) {

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

File: convex-platform/contracts/contracts/ArbitartorVault.sol

49: for(uint256 i = 0; i < _toPids.length; i++){

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

69: for(uint i=0; i < usedList.length; i++){

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L572
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L696
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L49

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 49/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L214

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L379

The unchecked keyword is new in solidity version 0.8.0, so this only applies to that version or
higher, which these instances are. This saves 30-40 gas PER LOOP

There are 13 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233

File: convex-platform/contracts/contracts/BaseRewardPool.sol

214: for(uint i=0; i < extraRewards.length; i++){

230: for(uint i=0; i < extraRewards.length; i++){

262: for(uint i=0; i < extraRewards.length; i++){

296: for(uint i=0; i < extraRewards.length; i++){

File: convex-platform/contracts/contracts/Booster.sol

379: for(uint i=0; i < poolInfo.length; i++){

538: for(uint256 i = 0; i < _gauge.length; i++){

[G-10] ++I/I++ SHOULD BE UNCHECKED{++I}/UNCHECKED{I++} WHEN IT
IS NOT POSSIBLE FOR THEM TO OVERFLOW, AS IS THE CASE WHEN
USED IN FOR- AND WHILE-LOOPS

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++) {

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++) {

File: contracts/ExtraRewardsDistributor.sol

233: for (uint256 i = epochIndex; i < tokenEpochs; i++) {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L214
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L379
https://gist.github.com/hrkrshnn/ee8fabd532058307229d65dcd5836ddc#the-increment-in-for-loop-post-condition-can-be-made-unchecked
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 50/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51

There is 1 instance of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L197

It should be saved to an immutable variable, and the variable used instead. If the hash is being used
as a part of a function selector, the cast to bytes4 should also only be done once

There is 1 instance of this issue:

File: contracts/AuraLocker.sol

174: for (uint256 i = 0; i < rewardTokensLength; i++) {

306: for (uint256 i; i < rewardTokensLength; i++) {

410: for (uint256 i = nextUnlockIndex; i < length; i++) {

664: for (uint256 i = locksLength; i > 0; i--) {

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++) {

726: for (uint256 i = epochIndex + 1; i > 0; i--) {

773: for (uint256 i = 0; i < userRewardsLength; i++) {

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

File: contracts/BalLiquidityProvider.sol

51: for (uint256 i = 0; i < 2; i++) {

[G-11] REQUIRE()/REVERT() STRINGS LONGER THAN 32 BYTES COST
EXTRA GAS

File: contracts/AuraLocker.sol #1

197: require(_rewardsToken != address(stakingToken), "Cannot add StakingToken a

[G-12] KECCAK256() SHOULD ONLY NEED TO BE CALLED ON A
SPECIFIC STRING LITERAL ONCE

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L197

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 51/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L562

There are 10 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L603

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L159

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool4626.sol#L180

File: convex-platform/contracts/contracts/Booster.sol #1

562: bytes memory data = abi.encodeWithSelector(bytes4(keccak256("set_rewards_r

[G-13] NOT USING THE NAMED RETURN VARIABLES WHEN A
FUNCTION RETURNS, WASTES DEPLOYMENT GAS

File: contracts/AuraLocker.sol

603: return 0;

649: return balanceAtEpochOf(findEpochId(block.timestamp), _user);

708: return (userBalance.locked, unlockable, locked, lockData);

708: return (userBalance.locked, unlockable, locked, lockData);

708: return (userBalance.locked, unlockable, locked, lockData);

708: return (userBalance.locked, unlockable, locked, lockData);

713: return totalSupplyAtEpoch(findEpochId(block.timestamp));

740: return _time.sub(epochs[0].date).div(rewardsDuration);

File: contracts/AuraVestedEscrow.sol

159: return 0;

File: convex-platform/contracts/contracts/BaseRewardPool4626.sol

180: return convertToShares(assets);

[G-14] USING BOOLS FOR STORAGE INCURS OVERHEAD

 // Booleans are more expensive than uint256 or any type that takes up a full
 // word because each write operation emits an extra SLOAD to first read the
 // slot's contents, replace the bits taken up by the boolean, and then write

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L562
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L603
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L159
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool4626.sol#L180

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 52/68

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-
L27
Use uint256(1) and uint256(2) for true/false

There are 18 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L34

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L77

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L33

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerV3.sol#L22

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L39

 // back. This is the compiler's defense against contract upgrades and
 // pointer aliasing, and it cannot be disabled.

File: contracts/AuraMerkleDrop.sol

34: mapping(address => bool) public hasClaimed;

File: contracts/AuraLocker.sol

77: mapping(address => mapping(address => bool)) public rewardDistributors;

114: bool public isShutdown = false;

File: contracts/AuraVestedEscrow.sol

33: bool public initialised = false;

File: convex-platform/contracts/contracts/PoolManagerV3.sol

22: bool public protectAddPool;

File: convex-platform/contracts/contracts/CrvDepositor.sol

39: bool public cooldown;

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

24: bool public isShutdown;

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L34
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L77
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerV3.sol#L22
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L39

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 53/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L24

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L35

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BoosterOwner.sol#L49

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ExtraRewardStashV3.sol#L40

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L54

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

26: mapping(address => bool) public usedMap;

File: convex-platform/contracts/contracts/VoterProxy.sol

35: mapping (address => bool) private stashPool;

36: mapping (address => bool) private protectedTokens;

37: mapping (bytes32 => bool) private votes;

File: convex-platform/contracts/contracts/BoosterOwner.sol

49: bool public isSealed;

53: bool public isForceTimerStarted;

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

40: bool public hasRedirected;

41: bool public hasCurveRewards;

File: convex-platform/contracts/contracts/Booster.sol

54: bool public isShutdown;

67: mapping(address => bool) public gaugeMap;

File: convex-platform/contracts/contracts/RewardFactory.sol

27: mapping (address => bool) private rewardAccess;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L24
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L35
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BoosterOwner.sol#L49
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L40
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L54
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L27

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 54/68

platform/contracts/contracts/RewardFactory.sol#L27

Use a solidity version of at least 0.8.0 to get overflow protection without SafeMath
Use a solidity
version of at least 0.8.2 to get compiler automatic inlining
Use a solidity version of at least 0.8.3 to
get better struct packing and cheaper multiple storage reads
Use a solidity version of at least 0.8.4
to get custom errors, which are cheaper at deployment than revert()/require() strings
Use a

solidity version of at least 0.8.10 to have external calls skip contract existence checks if the external
call has a return value

There are 28 instances of this issue. For details, see the warden’s full report.

This change saves 6 gas per instance

There are 23 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L122

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L52

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L121

[G-15] USE A MORE RECENT VERSION OF SOLIDITY

[G-16] USING > 0 COSTS MORE GAS THAN != 0 WHEN USED ON A
UINT IN A REQUIRE() STATEMENT

File: contracts/AuraMerkleDrop.sol

122: require(_amount > 0, "!amount");

File: contracts/AuraPenaltyForwarder.sol

52: require(bal > 0, "!empty");

File: contracts/AuraBalRewardPool.sol

121: require(_amount > 0, "RewardPool : Cannot stake 0");

139: require(_amount > 0, "RewardPool : Cannot stake 0");

157: require(amount > 0, "RewardPool : Cannot withdraw 0");

210: require(rewardsAvailable > 0, "!balance");

File: contracts/AuraLocker.sol

259: require(_amount > 0, "Cannot stake 0");

359: require(amt > 0, "Nothing locked");

385: require(length > 0, "no locks");

431: require(locked > 0, "no exp locks");

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L27
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://aws1.discourse-cdn.com/business6/uploads/zeppelin/original/2X/3/363a367d6d68851f27d2679d10706cd16d788b96.png
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L122
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L52
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L121

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 55/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L259

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L70

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/CrvDepositor.sol#L169

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L104

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/interfaces/BoringMath.sol#L20

471: require(len > 0, "Nothing to delegate");

822: require(_rewards > 0, "No reward");

851: require(_reward > 0, "No reward");

File: contracts/Aura.sol

68: require(_amount > 0, "Must mint something");

File: contracts/BalLiquidityProvider.sol

70: require(balAfter > 0, "!mint");

File: convex-platform/contracts/contracts/CrvDepositor.sol

169: require(_amount > 0,"!>0");

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

104: require(weight > 0, "must have weight");

File: convex-platform/contracts/contracts/interfaces/BoringMath.sol

20: require(b > 0, "BoringMath: division by zero");

102: require(b > 0, "BoringMath: division by zero");

123: require(b > 0, "BoringMath: division by zero");

143: require(b > 0, "BoringMath: division by zero");

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L259
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L70
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/CrvDepositor.sol#L169
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L104
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/interfaces/BoringMath.sol#L20

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 56/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L211

There are 26 instances of this issue. For details, see the warden’s full report.

Saves 6 gas PER LOOP

There are 24 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233

File: convex-platform/contracts/contracts/BaseRewardPool.sol

211: require(_amount > 0, 'RewardPool : Cannot stake 0');

227: require(amount > 0, 'RewardPool : Cannot withdraw 0');

[G-17] IT COSTS MORE GAS TO INITIALIZE VARIABLES TO ZERO
THAN TO LET THE DEFAULT OF ZERO BE APPLIED

[G-18] ++I COSTS LESS GAS THAN I++, ESPECIALLY WHEN IT’S
USED IN FOR-LOOPS (--I/I-- TOO)

File: contracts/AuraClaimZap.sol

143: for (uint256 i = 0; i < rewardContracts.length; i++) {

147: for (uint256 i = 0; i < extraRewardContracts.length; i++) {

151: for (uint256 i = 0; i < tokenRewardContracts.length; i++) {

File: contracts/ExtraRewardsDistributor.sol

233: for (uint256 i = epochIndex; i < tokenEpochs; i++) {

File: contracts/AuraLocker.sol

174: for (uint256 i = 0; i < rewardTokensLength; i++) {

306: for (uint256 i; i < rewardTokensLength; i++) {

410: for (uint256 i = nextUnlockIndex; i < length; i++) {

664: for (uint256 i = locksLength; i > 0; i--) {

696: for (uint256 i = nextUnlockIndex; i < locks.length; i++) {

726: for (uint256 i = epochIndex + 1; i > 0; i--) {

773: for (uint256 i = 0; i < userRewardsLength; i++) {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L211
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraClaimZap.sol#L143
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L233

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 57/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ArbitartorVault.sol#L49

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BoosterOwner.sol#L144

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ExtraRewardStashV3.sol#L125

File: contracts/AuraVestedEscrow.sol

100: for (uint256 i = 0; i < _recipient.length; i++) {

File: contracts/BalLiquidityProvider.sol

51: for (uint256 i = 0; i < 2; i++) {

File: convex-platform/contracts/contracts/ArbitartorVault.sol

49: for(uint256 i = 0; i < _toPids.length; i++){

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

69: for(uint i=0; i < usedList.length; i++){

File: convex-platform/contracts/contracts/BoosterOwner.sol

144: for(uint256 i = 0; i < poolCount; i++){

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

125: for(uint256 i = 0; i < maxRewards; i++){

199: for(uint i=0; i < tCount; i++){

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L174
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraVestedEscrow.sol#L100
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L51
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L49
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L69
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BoosterOwner.sol#L144
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L125

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 58/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L214

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L379

See this issue which describes the fact that there is a larger deployment gas cost, but with enough
runtime calls, the change ends up being cheaper

There are 15 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L171

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L90

File: convex-platform/contracts/contracts/BaseRewardPool.sol

214: for(uint i=0; i < extraRewards.length; i++){

230: for(uint i=0; i < extraRewards.length; i++){

262: for(uint i=0; i < extraRewards.length; i++){

296: for(uint i=0; i < extraRewards.length; i++){

File: convex-platform/contracts/contracts/Booster.sol

379: for(uint i=0; i < poolInfo.length; i++){

538: for(uint256 i = 0; i < _gauge.length; i++){

[G-19] SPLITTING REQUIRE() STATEMENTS THAT USE && SAVES GAS

File: contracts/ExtraRewardsDistributor.sol

171: require(_index > 0 && _index < rewardEpochs[_token].length - 1, "!past");

File: contracts/AuraStakingProxy.sol

90: require(_outputBps > 9000 && _outputBps < 10000, "Invalid output bps");

159: require(_token != crv && _token != cvx && _token != cvxCrv, "not allowed")

203: require(address(_token) != crv && address(_token) != cvxCrv, "not allowed"

File: contracts/BalLiquidityProvider.sol

48: require(_request.assets.length == 2 && _request.maxAmountsIn.length == 2,

57: require(bal > 0 && bal == _request.maxAmountsIn[i], "!bal");

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L214
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L379
https://github.com/code-423n4/2022-01-xdefi-findings/issues/128
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L171
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L90

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 59/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L48

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/StashFactoryV2.sol#L83

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L111

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L220

When using elements that are smaller than 32 bytes, your contract’s gas usage may be
higher. This is because the EVM operates on 32 bytes at a time. Therefore, if the element
is smaller than that, the EVM must use more operations in order to reduce the size of the
element from 32 bytes to the desired size.

https://docs.soliditylang.org/en/v0.8.11/internals/layout_in_storage.html
Use a larger size then
downcast where needed

There are 99 instances of this issue. For details, see the warden’s full report.

There are 2 instances of this issue:

File: convex-platform/contracts/contracts/StashFactoryV2.sol

83: require(!isV1 && !isV2 && !isV3,"stash version mismatch");

File: convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol

111: require(!usedMap[_lptoken] && !usedMap[_gauge], "cant force used pool");

File: convex-platform/contracts/contracts/Booster.sol

220: require(lockRewards != address(0) && rewardFactory != address(0), "!initia

222: require(_feeToken != address(0) && _feeDistro != address(0), "!addresses")

278: require(_lockFees >= 300 && _lockFees <= 1500, "!lockFees");

279: require(_stakerFees >= 300 && _stakerFees <= 1500, "!stakerFees");

280: require(_callerFees >= 10 && _callerFees <= 100, "!callerFees");

313: require(msg.sender==poolManager && !isShutdown, "!add");

314: require(_gauge != address(0) && _lptoken != address(0),"!param");

[G-20] USAGE OF UINTS/INTS SMALLER THAN 32 BYTES (256 BITS)
INCURS OVERHEAD

[G-21] ABI.ENCODE() IS LESS EFFICIENT THAN ABI.ENCODEPACKED()

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L48
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/StashFactoryV2.sol#L83
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/PoolManagerSecondaryProxy.sol#L111
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L220
https://docs.soliditylang.org/en/v0.8.11/internals/layout_in_storage.html
https://github.com/code-423n4/2022-05-aura-findings/issues/33

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 60/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L93

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/StashFactoryV2.sol#L88

If needed, the value can be read from the verified contract source code. Savings are due to the
compiler not having to create non-payable getter functions for deployment calldata, and not adding
another entry to the method ID table

There are 30 instances of this issue. For details, see the warden’s full report.

if (<x> == true) => if (<x>) , if (<x> == false) => if (!<x>)

There are 9 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L123

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ArbitartorVault.sol#L54

File: contracts/CrvDepositorWrapper.sol #1

93: abi.encode(IVault.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT, maxAmounts

File: convex-platform/contracts/contracts/StashFactoryV2.sol #2

88: bytes memory data = abi.encode(rewarded_token);

[G-22] USING PRIVATE RATHER THAN PUBLIC FOR CONSTANTS, SAVES
GAS

[G-23] DON’T COMPARE BOOLEAN EXPRESSIONS TO BOOLEAN
LITERALS

File: contracts/AuraMerkleDrop.sol

123: require(hasClaimed[msg.sender] == false, "already claimed");

File: convex-platform/contracts/contracts/ArbitartorVault.sol

54: require(shutdown==false,"pool closed");

File: convex-platform/contracts/contracts/VoterProxy.sol

107: require(operator == address(0) || IDeposit(operator).isShutdown() == true,

168: if(protectedTokens[_token] == false){

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/CrvDepositorWrapper.sol#L93
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/StashFactoryV2.sol#L88
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L123
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ArbitartorVault.sol#L54

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 61/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L107

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L400

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/RewardFactory.sol#L72

Version 0.8.0 introduces internal overflow checks, so using SafeMath is redundant and adds

overhead

There are 2 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L5

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L7

171: if(protectedTokens[_gauge] == false){

190: require(protectedTokens[address(_asset)] == false, "protected");

File: convex-platform/contracts/contracts/Booster.sol

400: require(pool.shutdown == false, "pool is closed");

574: require(pool.shutdown == false, "pool is closed");

File: convex-platform/contracts/contracts/RewardFactory.sol

72: require(msg.sender == operator || rewardAccess[msg.sender] == true, "!auth

[G-24] DON’T USE SAFEMATH ONCE THE SOLIDITY VERSION IS
0.8.0 OR GREATER

File: contracts/AuraBalRewardPool.sol #1

5: import { SafeMath } from "@openzeppelin/contracts-0.8/utils/math/SafeMath.sol";

File: contracts/AuraStakingProxy.sol #2

7: import { SafeMath } from "@openzeppelin/contracts-0.8/utils/math/SafeMath.sol";

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L107
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L400
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/RewardFactory.sol#L72
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L5
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L7

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 62/68

Saves deployment costs

There are 32 instances of this issue. For details, see the warden’s full report.

<x> * 2 is equivalent to <x> << 1 and <x> / 2 is the same as <x> >> 1 . The MUL and

DIV opcodes cost 5 gas, whereas SHL and SHR only cost 3 gas

There are 5 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L136

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L183

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMath.sol#L36

If the variable is only accessed once, it’s cheaper to use the state variable directly that one time

There is 1 instance of this issue:

[G-25] DUPLICATED REQUIRE()/REVERT() CHECKS SHOULD BE
REFACTORED TO A MODIFIER OR FUNCTION

[G-26] MULTIPLICATION/DIVISION BY TWO SHOULD USE BIT
SHIFTING

File: contracts/AuraMerkleDrop.sol

136: uint256 penalty = address(auraLocker) == address(0) ? 0 : (_amount * 2

File: contracts/AuraBalRewardPool.sol

183: uint256 penalty = (reward * 2) / 10;

File: contracts/AuraMath.sol

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

36: return (a / 2) + (b / 2) + (((a % 2) + (b % 2)) / 2);

[G-27] STACK VARIABLE USED AS A CHEAPER CACHE FOR A STATE
VARIABLE IS ONLY USED ONCE

File: contracts/AuraLocker.sol #1

328: uint256 epochindex = epochs.length;

https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L136
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L183
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMath.sol#L36

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 63/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L328

Checks that involve constants should come before checks that involve state variables

There are 11 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L69

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L77

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L472

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L129

[G-28] REQUIRE() OR REVERT() STATEMENTS THAT CHECK INPUT
ARGUMENTS SHOULD BE AT THE TOP OF THE FUNCTION

File: contracts/AuraMerkleDrop.sol

69: require(_expiresAfter > 2 weeks, "!expiry");

122: require(_amount > 0, "!amount");

File: contracts/AuraBalRewardPool.sol

77: require(_startDelay < 2 weeks, "!delay");

File: contracts/AuraLocker.sol

472: require(newDelegatee != address(0), "Must delegate to someone");

822: require(_rewards > 0, "No reward");

851: require(_reward > 0, "No reward");

File: contracts/Aura.sol

68: require(_amount > 0, "Must mint something");

69: require(_minter != address(0), "Invalid minter");

File: contracts/AuraStakingProxy.sol

129: require(_incentive <= 100, "too high");

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L328
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L69
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L77
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraLocker.sol#L472
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/Aura.sol#L68
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraStakingProxy.sol#L129

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 64/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L127

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L281

The code should be refactored such that they no longer exist, or the block should do something
useful, such as emitting an event or reverting. If the block is an empty if-statement block to avoid
doing subsequent checks in the else-if/else conditions, the else-if/else conditions should be nested
under the negation of the if-statement, because they involve different classes of checks, which may
lead to the introduction of errors when the code is later modified (
if(x){}else if(y){...}else{...} => if(!x){if(y){...}else{...}})

There are 6 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L312

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/ExtraRewardStashV3.sol#L116-L117

File: convex-platform/contracts/contracts/BaseRewardPool.sol

127: require(_reward != address(0),"!reward setting");

File: convex-platform/contracts/contracts/Booster.sol

281: require(_platform <= 200, "!platform");

[G-29] EMPTY BLOCKS SHOULD BE REMOVED OR EMIT SOMETHING

File: convex-platform/contracts/contracts/VoterProxy.sol

312: }catch{}

File: convex-platform/contracts/contracts/ExtraRewardStashV3.sol

116 try IRewardHook(rewardHook).onRewardClaim(){
117: }catch{}

117: }catch{}

File: convex-platform/contracts/contracts/Booster.sol

361 try IStaker(staker).withdrawAll(pool.lptoken,pool.gauge){
362: }catch{}

362: }catch{}

389: }catch{}

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L127
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L281
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L312
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ExtraRewardStashV3.sol#L116-L117

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 65/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L361-L362

Custom errors are available from solidity version 0.8.4. The instances below match or exceed that
version

There are 101 instances of this issue. For details, see the warden’s full report.

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries to
pay the function. Marking the function as payable will lower the gas cost for legitimate callers

because the compiler will not include checks for whether a payment was provided. The extra
opcodes avoided are
 CALLVALUE (2), DUP1 (3), ISZERO (3), PUSH2 (3), JUMPI (10), PUSH1 (3),

DUP1 (3), REVERT (0), JUMPDEST (1), POP (2), which costs an average of about 21 gas per call to the
function, in addition to the extra deployment cost

There are 37 instances of this issue. For details, see the warden’s full report.

Contracts are allowed to override their parents’ functions and change the visibility from external

to public and can save gas by doing so.

There are 18 instances of this issue:

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L117

[G-30] USE CUSTOM ERRORS RATHER THAN REVERT()/REQUIRE()
STRINGS TO SAVE DEPLOYMENT GAS

[G-31] FUNCTIONS GUARANTEED TO REVERT WHEN CALLED BY
NORMAL USERS CAN BE MARKED PAYABLE

[G-32] PUBLIC FUNCTIONS NOT CALLED BY THE CONTRACT SHOULD
BE DECLARED EXTERNAL INSTEAD

File: contracts/ExtraRewardsDistributor.sol

117: function getReward(address _account, address _token) public {

127 function getReward(
128 address _account,
129 address _token,
130: uint256 _startIndex

File: contracts/AuraMerkleDrop.sol

114 function claim(
115 bytes32[] calldata _proof,
116 uint256 _amount,
117 bool _lock
118:) public returns (bool) {

149 function forwardPenalty() public {
150: uint256 toForward = pendingPenalty;

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L361-L362
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://github.com/code-423n4/2022-05-aura-findings/issues/33
https://docs.soliditylang.org/en/latest/contracts.html#function-overriding
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/ExtraRewardsDistributor.sol#L117

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 66/68

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L114-
L118

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L47-
L48

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L138

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L46

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-

File: contracts/AuraPenaltyForwarder.sol

47 function forward() public {
48: require(block.timestamp > lastDistribution + distributionDelay, "!elapsed"

File: contracts/AuraBalRewardPool.sol

138: function stakeFor(address _for, uint256 _amount) public updateReward(_for) ret

152 function withdraw(
153 uint256 amount,
154 bool claim,
155 bool lock
156:) public updateReward(msg.sender) returns (bool) {

195 function forwardPenalty() public {
196: uint256 toForward = pendingPenalty;

File: contracts/BalLiquidityProvider.sol

46: function provideLiquidity(bytes32 _poolId, IVault.JoinPoolRequest memory _requ

File: convex-platform/contracts/contracts/ConvexMasterChef.sol

96 function add(
97 uint256 _allocPoint,
98 IERC20 _lpToken,
99 IRewarder _rewarder,
100 bool _withUpdate
101:) public onlyOwner {

121 function set(
122 uint256 _pid,
123 uint256 _allocPoint,
124 IRewarder _rewarder,
125 bool _withUpdate,
126 bool _updateRewarder
127:) public onlyOwner {

209: function deposit(uint256 _pid, uint256 _amount) public {

239: function withdraw(uint256 _pid, uint256 _amount) public {

283: function emergencyWithdraw(uint256 _pid) public {

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraMerkleDrop.sol#L114-L118
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraPenaltyForwarder.sol#L47-L48
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/AuraBalRewardPool.sol#L138
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/contracts/BalLiquidityProvider.sol#L46
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L101

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 67/68

platform/contracts/contracts/ConvexMasterChef.sol#L96-L101

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VoterProxy.sol#L151

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/BaseRewardPool.sol#L191-L193

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/VirtualBalanceRewardPool.sol#L178-L180

https://github.com/code-423n4/2022-05-
aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-
platform/contracts/contracts/Booster.sol#L493

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart contracts.
Security researchers are rewarded at an increasing rate for finding higher-risk issues. Contest
submissions are judged by a knowledgeable security researcher and solidity developer and
disclosed to sponsoring developers. C4 does not conduct formal verification regarding the provided
code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All smart
contract software should be used at the sole risk and responsibility of users.

File: convex-platform/contracts/contracts/VoterProxy.sol

151: function isValidSignature(bytes32 _hash, bytes memory) public view returns (by

File: convex-platform/contracts/contracts/BaseRewardPool.sol

191 function stakeFor(address _for, uint256 _amount)
192 public
193: returns(bool)

File: convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol

178 function withdraw(address _account, uint256 amount)
179 public
180: updateReward(_account)

File: convex-platform/contracts/contracts/Booster.sol

493: function withdrawAll(uint256 _pid) public returns(bool){

Disclosures

https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/ConvexMasterChef.sol#L96-L101
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VoterProxy.sol#L151
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/BaseRewardPool.sol#L191-L193
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/VirtualBalanceRewardPool.sol#L178-L180
https://github.com/code-423n4/2022-05-aura/blob/4989a2077546a5394e3650bf3c224669a0f7e690/convex-platform/contracts/contracts/Booster.sol#L493

27/07/2022, 10:53 Aura Finance contest — Code 423n4

https://code4rena.com/reports/2022-05-aura/ 68/68

A N O P E N O R G A N I Z AT I O N » » T W IT T E R // D I S C O R D // G IT H U B

0 XC 2 B C 2 F 8 9 0 0 6 7 C 5 1 1 2 1 5 F 9 4 6 3 A 0 6 4 2 2 1 5 7 7 A 5 3 E 1 0 //

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

